Lecture 05: Repeated Squaring
Let \((G, \circ)\) be a group with generator \(g\).

- We define \(g^0 = e\), where \(r \in G\) is the identity element of \(G\).
- We define \(g^i = \underbrace{g \circ g \circ \cdots \circ g}_{\text{i-times}}\).
- For example, the group \((\mathbb{Z}_7^*, \times)\) is generated by 3 but not 2.
Motivation of Efficient Algorithm to Compute Exponentiation

- Suppose p is a prime number that is represented using 1000-bits.
- Note that the number p is in the range $[2^{999}, 2^{1000})$. We shall summarize this by stating that p is roughly (in the order of) 2^{1000}.
- Suppose we are interested to work on the field (\mathbb{Z}_p^*, \times) with generator g.
- Given input $i \in \{0, 1, \ldots, p - 1\}$, we are interested in computing $g^i \in \mathbb{Z}_p^*$.
Exp \((i) \):

1. prod = e
2. For index in the range \(\{1, \ldots, i\} \):
 1. prod = prod \circ g
3. Return prod

- Note that this algorithm runs the inner loop \(i \) times. The number \(i \) can take values \(\{0, 1, \ldots, p - 2\} \). For example, if \(i \geq 2^{500} \) then the algorithm will run the inner loop more than the number of atoms in the universe. Effectively, the algorithm is useless.

- The algorithm takes \(O(i) \) run-time. The size of the input \(i \) is \(\log i \). So, this algorithm is an exponential time algorithm.
Second Attempt 1

Exp (i):

1. If $i = 0$: Return e
2. If i is even:
 1. $\alpha = \text{Exp}(i/2)$
 2. Return $\alpha \circ \alpha$
3. If i is odd:
 1. $\alpha = \text{Exp}((i - 1)/2)$
 2. Return $\alpha \circ \alpha \circ g$

Note that the argument to Exp becomes smaller by one-bit in recursive call. So, the algorithm performs (at most) 1000 recursive call. This is an efficient algorithm because it runs in time $O(\log i)$
A Few Optimizations.

- Testing whether i is even or not can be performed by computing $i \& 1$ (here, $\&$ is the bit-wise and of the binary representation of i and 1).

- Computing $(i/2)$ when i is even, or computing $(i - 1)/2$ when i is odd can be achieved by $i \gg 1$ (that is, right-shift the binary representation of i by one position).
The code shall look as follows

\[\text{Exp} (i): \]

1. If \(i = 0 \): Return \(e \)
2. \(j \gg 1 \)
3. If \((i \& 1) == 0:\)
 1. \(\alpha = \text{Exp}(j) \)
 2. Return \(\alpha \circ \alpha \)
4. else:
 1. \(\alpha = \text{Exp}(j) \)
 2. Return \(\alpha \circ \alpha \circ g \)
The algorithm makes recursive calls. Can we further optimize and avoid recursive function calls? That is, can we unroll the recursion into a for loop?
In the following code, we assume that we represent the prime p using t-bits. For example, we were considering $t = 1000$ in the ongoing example. We perform a preprocessing step to compute the following global variables.

Global Preprocessing.

1. For index in the set $\{0, 1, \ldots, t - 1\}$:
 - If index $== 0$: $\alpha_{\text{index}} = g$ and $c_{\text{index}} = 1$
 - Else: $\alpha_{\text{index}} = \alpha_{\text{index-1}} \circ \alpha_{\text{index-1}}$ and $c_{\text{index}} = (c_{\text{index-1}} \ll 1)$

- Note that $\alpha_{\text{index}} = g^{2^{\text{index}}}$, for all index $\in \{0, 1, \ldots, t - 1\}$
- Further, note that $c_{\text{index}} = 2^{\text{index}}$, for all index $\in \{0, 1, \ldots, t - 1\}$
We shall use the preprocessed data to compute the exponentiation $\text{Exp}(i)$:

1. Let $\text{prod} = e$
2. For index in the set $\{0, 1, \ldots, t - 1\}$:
 1. If ($i < c_{\text{index}}$) : Break
 2. If ($i \& c_{\text{index}} \neq 0$): $\text{prod} = \text{prod} \circ \alpha_{\text{index}}$
3. Return prod

- Note that the test “the (1 + index)-th bit in the binary representation of i is 1” is identical to the test ($i \& c_{\text{index}} \neq 0$)
- If this test passes, then prod is multiplied by $\alpha_{\text{index}} = g^{2^\text{index}}$
- Prove: This approach correctly calculates g^i
- Note that the runtime is $O(\log i)$ (that is, the algorithm is efficient)
Let us consider a problem that shall use all the facts we studied about groups and fields in the last two lectures. There are multiple solutions with varying degree of complexities.

Compute

$$17^{2020} \mod 23$$
Solution 1.

- We can use repeated squaring directly to compute

\[
\begin{align*}
17^1 & \mod 23 \\
17^2 & \mod 23 \\
17^4 & \mod 23 \\
\vdots \\
17^{1024} & \mod 23
\end{align*}
\]

- Write 2020 in binary and compute \(17^{2020} \mod 23\) using the values computed above.

- Although this is a correct and a tractable way to compute this value, it is computationally intensive and prone to errors (without a calculator).
Solution 2.

- In homework you will prove that $x^p \equiv x \mod p$, where p is a prime and x is any integer.
- You can use this fact to simplify the computation of $17^{2020} \mod 23$ as follows.
Example Problem

\[17^{2020} \mod 23 = 17^{23} \cdot 17^{1997} \mod 23 \]

\[= (17^{23})^2 \cdot 17^{1974} \mod 23 \]

\[= (17^{23})^{87} \cdot 17^1 \mod 23, \quad \text{using } x^p = x \mod p \]

\[= 17^{106} \mod 23 \]

\[= (17^{23})^4 \cdot 17^{14} \mod 23 \]

\[= (17)^4 \cdot 17^{14} \mod 23, \quad \text{using } x^p = x \mod p \]

\[= 17^{18} \mod 23 \]

- This final expression can be computed using the repeated squaring technique
Solution 3.

In homework you will prove that $x^{p-1} = 1 \mod p$, where p is a prime and x is any integer NOT divisible by p (there are also alternate proofs of this statement by considering the size of the subgroup of (\mathbb{Z}^*_p, \times) that is generated by x)

So, we can compute the expression as follows

$$17^{2020} \mod 23 = 17^{22} \cdot 17^{1998} \mod 23$$

$$= (17^{22})^2 \cdot 17^{1976} \mod 23$$

$$\vdots$$

$$= (17^{22})^{91} \cdot 17^{18} \mod 23$$

$$= (1)^{91} \cdot 17^{18} \mod 23, \quad \text{using } x^{p-1} = 1 \mod p$$

$$= 17^{18} \mod 23$$
BTW, in general you can conclude that

\[x^n = x^n \mod p \cdot 1 \mod p, \]

for any integer \(n \) and any integer \(x \) that is not divisible by \(p \).

Now you can compute \(17^{18} \mod 23 \) result using repeated squaring technique:

\[
\begin{align*}
17^1 &= 17 \mod 23 \\
17^2 &= 13 \mod 23 \\
17^4 &= 8 \mod 23 \\
17^8 &= 18 \mod 23 \\
17^{16} &= 2 \mod 23
\end{align*}
\]
Now, we have

\[17^{18} = 17^{16+2} \mod 23 \]
\[= 17^{16} \cdot 17^2 \mod 23 \]
\[= 2 \cdot 13 \mod 23 \]
\[= 3 \mod 23 \]

Therefore, we conclude that

\[17^{2020} = 17^{18} = 3 \mod 23. \]

That is our answer!