
Lecture 01: Mathematical Basics (Summations)
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What I am Assuming

I am assuming that you know asymptotic notations. For
example, the big-O, little-O notations
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Summation I

Let us try to write a closed form expression for the following
summation

S =
n∑

i=1

1

It is trivial to see that S = n

Basics



Summation II

Now, let us try to write a closed form expression for the
following summation

S =
n∑

i=1

i

We can prove that S = n(n+1)
2

How do you prove this statement? (Use Induction? Use the
formula for the Sum of an Arithmetic Progression?)

Using Asymptotic Notation, we can say that S = n2

2 + o(n2)
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Summation III

Now, let us try to write a closed form expression for the
following summation

S =
n∑

i=1

i2

We can prove that S = n(n+1)(2n+1)
6

Why is the expression on the right an integer? (Prove by
induction that 6 divides n(n + 1)(2n + 1) for all positive
integer n)
How do you prove this statement? (Use Induction?)

Using Asymptotic Notation, we can say that S = n3

3 + o(n3)
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Summation IV

Do we see a pattern here?

Conjecture: For k > 1, we have
∑n

i=1 i
k−1 = nk

k + o(nk).
How do we prove this statement?
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Estimating Summations by Integration I

Let f be an increasing function

For example, f (x) = xk−1 is an increasing function for k > 1
and x > 0
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Estimating Summations by Integration II

xx − 1

f (x)
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Estimating Summations by Integration III

Observation: “Blue area under the curve” is smaller than the
“Shaded area of the rectangle”

Blue area under the curve is:∫ x

x−1
f (t)dt

Shaded area of the rectangle is:

f (x)

So, we have the inequality:∫ x

x−1
f (t) dt 6 f (x)

Summing both side from x = 1 to x = n, we get

n∑
x=1

∫ x

x−1
f (t) dt 6

n∑
x=1

f (x)
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Estimating Summations by Integration IV

The left-hand side of the inequality is∫ 1

0
f (t) dt +

∫ 2

1
f (t) dt +· · ·+

∫ n

n−1
f (t) dt =

∫ n

0
f (t) dt

So, for an increasing f , we have the following lower bound.∫ n

0
f (t) dt 6

n∑
x=1

f (x) (1)
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Estimating Summations by Integration V

Now, we will upper bound the summation expression. Consider
the figure below

xx − 1

f (x − 1)
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Estimating Summations by Integration VI
Observation: “Blue area under the curve” is greater than the
“Shaded area of the rectangle”
So, we have the inequality:∫ x

x−1
f (t) dt > f (x − 1)

Now we sum the above inequality from x = 2 to x = n + 1
We get∫ 2

1
f (t) dt+

∫ 3

2
f (t) dt+· · ·+

∫ n+1

n
f (t) dt > f (1)+f (2)+· · ·+f (n)

So, for an increasing f , we get the following upper bound∫ n+1

1
f (t) dt >

n∑
x=1

f (x) (2)
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Summary: Estimation of Summation using Integration

Theorem

For an increasing function f , we have∫ n

0
f (t) dt 6

n∑
x=1

f (x) 6
∫ n+1

1
f (t) dt

Exercise:
Use this theorem to prove that

∑n
i=1 i

k−1 = nk

k + o(nk), for
k > 1
Consider the function f (x) = 1/x to find upper and lower
bounds for the sum Hn = 1+ 1

2 +· · ·+ 1
n using the approach

used to prove Theorem 1
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Differentiation and Integration

Differentiation: f ′(x) represents the slope of the curve
y = f (x) at x

Integration:
∫ b
a f (t) dt represents the area under the curve

y = f (x) between x = a and x = b

Increasing function:
Observation: The slope an increasing function is positive
So, “f is increasing at x” is equivalent to “f ′(x) > 0,” i.e. f ′ is
positive at x

Suppose we want to mathematically write “Slope of a function
f is increasing”

The “slope of a function f ” is the function “f ′”
So, the statement “slope of a function f is increasing” is
equivalent to “(f ′)′ ≡ f ′′ is positive”
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Concave Upwards Functions

Definition (Concave Upwards Function)

A function f is concave upwards in the interval [a, b] if f ′′ is
positive in the interval [a, b].

Example of functions that concave upwards: x2, exp(x), 1/x
(in the interval (0,∞)), x log x (in the interval (0,∞))

We emphasize that a “concave upwards” function need not be
increasing, for example f (x) = 1/x (for positive x) is
decreasing
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Property of Concave Upwards Function I

Consider the coordinates (x − 1, f (x − 1)) and (x , f (x))

For a concave upwards function, the secant between the two
coordinates is always (on or) above the part of the curve f
between the two coordinates

xx − 1

f (x − 1)

f (x)
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Property of Concave Upwards Function II

So, the shaded area of the trapezium is greater than the blue
area under the curve

xx − 1

f (x − 1)

f (x)
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Property of Concave Upwards Function III

So, we get
f (x − 1) + f (x)

2
>
∫ x

x−1
f (t) dt

Now, use this new observation to obtain a better lower bound
for the sum

∑n
x=1 f (x)

Think: Can you get even tighter bounds?

Additional Reading: Read on the “trapezoidal rule”
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Estimating Products

Consider the objective of estimating n! using elementary
functions
Note that one can convert this estimation of products into
estimation of sums by taking log. For example,

ln(n!) =
n∑

i=1

ln(i).

Now, one can tightly upper and lower bound the expression∑n
i=1 ln(i). Use the techniques in the previous slides to obtain

meaningful upper and lower bounds of this expression. Suppose

Ln 6
n∑

i=1

ln(i) 6 Un.

Therefore, one concludes that

exp(Ln) 6 n! 6 exp(Un).
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Estimating Fractions

Consider the objective of estimating a fraction An/Bn

Suppose we have An 6 Un and L′n 6 Bn. Note that

1
Bn

6
1
L′n

.

Note that multiplying with An 6 Un, one gets that

An

Bn
6

Un

L′n
.

To summarize, upper-bounding a fraction involves
upper-bounding the numerator and lower-bounding the
denominator
Analogously, if Ln 6 An and Bn 6 U ′n, then we get Ln

U′
n
6 An

Bn

Food for thought. Provide meaningful upper and lower
bound the expression

(2n
n

)
:= (2n)!

(n!)2
.
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