## Homework 6

1. Fourier Transformation Matrix. (20 points) We shall provide an alternate mechanism to construct the Fourier transformation matrix. Recall that, for functions $\{0,1\}^{n} \rightarrow \mathbb{R}$, we defined the basis functions as follows. For all $S, x \in\{0,1\}^{n}$, we defined

$$
\chi_{S}(x):=(-1)^{S_{1} \cdot x_{1}+S_{2} \cdot x_{2}+\cdots+S_{n} \cdot x_{n}}
$$

Given this definition of the Fourier basis functions, the definition of the Fourier transformation matrix $\mathcal{F}_{n} \in \frac{1}{N}\{+1,-1\}^{N \times N}$, where $N=2^{n}$, is as follows. We shall use row indices $i \in$ $\{0,1, \ldots, N-1\}$ and $j \in\{0,1, \ldots, N-1\}$ and define

$$
(\mathcal{F})_{i, j}:=\frac{1}{N} \chi_{j}(i)
$$

Now, we begin the new definition using matrix tensor product. Let $A \in \mathbb{R}^{a \times b}$ and $B \in \mathbb{R}^{a^{\prime} \times b^{\prime}}$ be two matrices. We define the block matrix $C=A \otimes B$ as follows. For $i \in\{1, \ldots, a\}$ and $b \in\{1, \ldots, b\}$

$$
C_{i, j}:=a_{i, j} B
$$

Base case. Define

$$
\mathcal{G}_{1}:=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Recursive construction. Define, for $n>1, \mathcal{G}_{n}:=\mathcal{G}_{1} \otimes \mathcal{G}_{n-1}$.
Prove, by induction, that $\mathcal{F}_{n}=\mathcal{G}_{n}$.
Solution.
2. Smoothed Function Property. (20 points) Let $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ be a function. Let $L_{p}(f)$ be the norm defined as follows

$$
L_{p}(f):=\left(\frac{1}{N} \sum_{x \in\{0,1\}^{n}}|f(x)|^{p}\right)^{1 / p}
$$

For any $\rho \in[0,1]$, prove that $L_{p}\left(T_{\rho}(f)\right) \leqslant L_{p}(f)$. Equality holds if and only if $f$ is a constant function, or $\rho=1$.

Solution.
3. Most Random functions are Small Biased. (20 points) Let $f:\{0,1\}^{n} \rightarrow\{+1,-1\}$ be a boolean function. Suppose we consider a random boolean function such that, for every $x \in\{0,1\}^{n}$, we assign $f(x)$ independently and uniformly at random from the set $\{+1,-1\}$. Recall that a function $f$ is small biased if $\left|\operatorname{bias}_{f}(S)\right| \leqslant \varepsilon$ for all $0 \neq S \in\{0,1\}^{n}$.
Formally state and prove a concentration result that proves: "a random boolean function is small-biased with very high probability."
Solution.
4. Differential Operator. (20 points) We shall consider functions $\{0,1\}^{n} \rightarrow \mathbb{R}$. Let us introduce a notation. Given $x \in\{0,1\}^{n}$, we represent $\left.x\right|_{i=1}$ as the bit-string identical to $x$ except that its $i$-th coordinate is fixed to 1 . Similarly, $\left.x\right|_{i=0}$ is the bit-string that is identical to $x$ except that its $i$-th coordinate is fixed to 0 .
Let $D_{i}(f)$ be the function $\{0,1\}^{n} \rightarrow \mathbb{R}$ defined as follows

$$
D_{i}(f)(x)=f\left(\left.x\right|_{i=1}\right)-f\left(\left.x\right|_{i=0}\right)
$$

Express $\widehat{D_{i}(f)}$ as a function of $\widehat{f}$.
Solution.
5. Flats are Small-biased Distribution. (20 points) We shall consider function $\mathbb{Z}_{p} \rightarrow \mathbb{C}$ in this problem. Define $\omega=\exp (2 \pi \imath / p)$. Recall that we defined, for $S \in \mathbb{Z}_{p}$, as follows

$$
\operatorname{bias}_{f}(S)=\sum_{x \in \mathbb{Z}_{p}} f(x) \omega^{S \cdot x}
$$

Let $\mathbb{X}$ be a uniform distribution over the set $\{0,1, \ldots, t-1\}$, for some integer $t<p$. Prove that

$$
\operatorname{bias}_{\mathbb{X}}(1) \leqslant \frac{\operatorname{sinc}(\pi t / p)}{\operatorname{sinc}(\pi / p)}
$$

where $\operatorname{sinc}(x):=\sin (x) / x$

## Solution.

## Collaborators :

