Homework 3

1. Sum of Poisson. Let \mathbb{X} be the Poisson distribution with mean m / n. Let $\mathbb{S}_{n}:=\mathbb{X}\left({ }^{(1)}+\mathbb{X}\left({ }^{(2)}+\right.\right.$ $\cdots+\mathbb{X}^{(n)}$, where $\mathbb{X}^{(1)}, \mathbb{X}^{(2)}, \ldots, \mathbb{X}^{(n)}$ are all independent and identical to \mathbb{X}. Upper-bound the following probability

$$
\mathbb{P}\left[\mathbb{S}_{n}-\mathbb{E}\left[\mathbb{S}_{n}\right] \geqslant E\right]
$$

Solution.
2. Sum of an Interesting Random Variable. (20 points) Let \mathbb{X} be the random variable over natural numbers $\{1,2,3, \ldots\}$ such that, for any natural number i, we have

$$
\mathbb{P}[\mathbb{X}=i]=2^{-i}
$$

Let $\mathbb{S}_{n}=\mathbb{X}^{(1)}+\mathbb{X}^{(2)}+\cdots+\mathbb{X}^{(n)}$, where $\mathbb{X}^{(1)}, \mathbb{X}^{(2)}, \ldots, \mathbb{X}^{(n)}$ are independent and identical to \mathbb{X}.

- (5 points) What is $\mathbb{E}\left[\mathbb{S}_{n}\right]$?
- (15 points) Upper-bound the following probability

$$
\mathbb{P}\left[\mathbb{S}_{n}-\mathbb{E}\left[\mathbb{S}_{n}\right] \geqslant E\right]
$$

Solution.

3. Coin-tossing: Word Problem. (20 points) Suppose you have access to a coin that outputs heads with probability $1 / 2$ and outputs tails with probability $1 / 2$. Let \mathbb{S}_{n} represent the number of coin tosses needed to see exactly n heads.

- (5 points) What is $\mathbb{E}\left[\mathbb{S}_{n}\right]$?
- (15 points) Upper-bound the following probability

$$
\mathbb{E}\left[\mathbb{S}_{n}-\mathbb{E}\left[\mathbb{S}_{n}\right] \geqslant E\right]
$$

Solution.

4. Empty Bins in the Poisson Model. (20 points) Let \mathbb{X} represent the Poisson distribution with mean m / n. Let \mathbb{Y} be the indicator variable $\mathbf{1}_{\{\mathbb{X}=0\}}$. That is, \mathbb{Y} is the random variable that is 1 if and only if the load is 0 .
Let $\mathbb{S}_{n}=\mathbb{Y}^{(1)}+\mathbb{Y}^{(2)}+\ldots+\mathbb{Y}^{(n)}$, where $\mathbb{Y}^{(1)}, \mathbb{Y}^{(2)}, \ldots, \mathbb{Y}^{(n)}$ are independent and identical to \mathbb{Y}.

- (5 points) What is $\mathbb{E}\left[\mathbb{S}_{n}\right]$?
- (15 points) Upper-bound the following probability

$$
\mathbb{P}\left[\mathbb{S}_{n}-\mathbb{E}\left[\mathbb{S}_{n}\right] \geqslant E\right]
$$

Solution.

5. Random Walk in 2-D. (20 points) Suppose an insect starts at (0,0) at time $t=0$. At time t, its position is described by $(\mathbb{X}(t), \mathbb{Y}(t))$. At the next time step $t+1$, the insect uniformly at random moves to (a) $(\mathbb{X}(t)+1, \mathbb{Y}(t)),(\mathbb{X}(t)-1, \mathbb{Y}(t)),(\mathbb{X}(t), \mathbb{Y}(t)+1)$, or $(\mathbb{X}(t), \mathbb{Y}(t)-1)$. State (5 points) and prove (15 points) a theorem that bounds how far from the origin the insect is at time $t=n$.

Solution.

Collaborators :

