Homework 2

1. Solving an Interesting Equation. (20 points) Our objective is to understand the behavior of x such that $x!=n$ as a function of n. We shall use the following estimate of $x!$

$$
\left(\frac{x}{\mathrm{e}}\right)^{x} \leqslant x!\leqslant x^{x}
$$

(Remark: The upper-bound is trivial. The lower-bound is a consequence of estimating the increasing function $\log t$ using integrals.)

- Prove that if $x=\frac{\log n}{\log \log n}$ then $x!\leqslant n$.
- Prove that, for large enough n, if $x=\frac{e \log n}{\log \log n}$ then $x!\geqslant n$.
(Remark: These proofs complete the argument that $x=\Theta(\log n / \log \log n)$. Substituting poly n instead of n, completes the argument that $x=\Theta(\log n / \log \log n)$ when $x!=$ poly n, for any fixed polynomial poly)

Solution.

2. Upper-bounding Max-load using Poisson Approximation Theorem. (20 points) Recall that in the lecture we proved the upper-bound on max-load directly. Let us see how we can use the Poisson approximation theorem to prove that result easily.

- Let $\mathbb{X}(\mu)$ be the Poisson distribution with mean μ. Prove the following bound. For any integer $T \geqslant 2 \mu$, we have

$$
\mathbb{P}[\mathbb{X}(\mu) \geqslant T] \leqslant 2 \mathbb{P}[\mathbb{X}(\mu)=T]
$$

(Remark: Basically, this inequality proves that $\mathbb{P}[\mathbb{X}(\mu) \geqslant T]$ is well approximated by $\mathbb{P}[\mathbb{X}(\mu)=T])$

- Suppose \mathbb{X} represents the Poisson distribution with mean $\mu=1$. Prove that there exists a positive constant c such that

$$
\mathbb{P}\left[\mathbb{X} \geqslant c \frac{\log n}{\log \log n}\right] \leqslant \frac{1}{n^{3}}
$$

- Prove that

$$
\mathbb{P}\left[\max \left\{\mathbb{X}^{(1)}, \mathbb{X}^{(2)}, \ldots, \mathbb{X}^{(n)}\right\}<c \frac{\log n}{\log \log n}\right] \geqslant 1-\frac{1}{n^{2}}
$$

Solution.

3. Coupon Collector Problem. (20 points) Our objective is to solve the Coupon Collector Problem using the Poisson approximation theorem. Here, we want to determine the value of m such that when m balls are thrown into n bins, with high probability every bin receives at least one ball. Equivalently, we want to determine the value of m such that the probability of the minimum load being 0 is small.

- Let $\mathbb{X}(\mu)$ be the Poisson distribution with mean μ. Find the value of m such that, for $\mu=m / n$, we have

$$
\mathbb{P}[\mathbb{X}(\mu)=0] \leqslant \frac{1}{n^{3}}
$$

- Let \mathbb{X} be the Poisson distribution for the μ determined above. Let $\mathbb{X}^{(i)}$ be the i-th independent copy of the distribution \mathbb{X}. Prove the following bound.

$$
\mathbb{P}\left[\min \left\{\mathbb{X}^{(1)}, \mathbb{X}^{(2)}, \ldots, \mathbb{X}^{(n)}\right\}=0\right] \leqslant \frac{1}{n^{2}}
$$

- Use the Poisson Approximation Theorem to prove the following bound. For large enough n and $\mathbb{L}_{\text {min }}:=\min \left\{\mathbb{L}_{1}, \mathbb{L}_{2}, \ldots, \mathbb{L}_{n}\right\}$

$$
\mathbb{P}\left[\mathbb{L}_{\min } \geqslant 1\right] \geqslant 1-\frac{1}{n}
$$

Solution.

4. A Fun Ball and Bins Problem. (20 points) Let us consider a fun problem. Suppose we are interested in ensuring that every bin received at least 2 balls. Let us get you started on how to think about this fun problem.

Let $\mathbb{X}(\mu)$ be the Poisson distribution with mean μ. Find the value of m such that, for $\mu=m / n$ and positive integers m and n, we have

$$
\mathbb{P}[\mathbb{X}(\mu) \in\{0,1\}] \leqslant \frac{1}{n^{3}}
$$

Solution.

5. Towards proving Poisson Approximation Theorem. (20 points) Let me get you started towards proving the simpler version of the Poisson approximation theorem that was taught in the class. Let \mathbb{X} be the Poisson distribution with mean μ, where $\mu=m / n$. Prove the following inequality

$$
\mathbb{P}\left[\mathbb{X}^{(1)}+\mathbb{X}^{(2)}+\cdots+\mathbb{X}^{(n)}=m\right]=\left(\frac{m}{\mathrm{e}}\right)^{m} \frac{1}{m!} \geqslant \frac{1}{\mathrm{e} \sqrt{m}}
$$

(Remark: Use the Stirling's approximation taught in the class for the final inequality.)
Solution.

Collaborators :

