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Homework 2

1. Solving an Interesting Equation. (20 points) Our objective is to understand the behavior
of x such that x! = n as a function of n. We shall use the following estimate of x!(

x

e

)x

6 x! 6 xx

(Remark: The upper-bound is trivial. The lower-bound is a consequence of estimating the
increasing function log t using integrals.)

• Prove that if x = logn
log logn then x! 6 n.

• Prove that, for large enough n, if x = e logn
log logn then x! > n.

(Remark: These proofs complete the argument that x = Θ(log n/ log log n). Substituting
poly n instead of n, completes the argument that x = Θ(log n/ log logn) when x! = poly n,
for any fixed polynomial poly)

Solution.
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2. Upper-bounding Max-load using Poisson Approximation Theorem. (20 points) Re-
call that in the lecture we proved the upper-bound on max-load directly. Let us see how we
can use the Poisson approximation theorem to prove that result easily.

• Let X(µ) be the Poisson distribution with mean µ. Prove the following bound. For any
integer T > 2µ, we have

P
[
X(µ) > T

]
6 2P

[
X(µ) = T

]
(Remark: Basically, this inequality proves that P

[
X(µ) > T

]
is well approximated by

P
[
X(µ) = T

]
)

• Suppose X represents the Poisson distribution with mean µ = 1. Prove that there exists
a positive constant c such that

P
[
X > c

log n

log logn

]
6

1

n3

• Prove that
P
[
max

{
X(1),X(2), . . . ,X(n)

}
< c

log n

log log n

]
> 1− 1

n2

Solution.
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3. Coupon Collector Problem. (20 points) Our objective is to solve the Coupon Collector
Problem using the Poisson approximation theorem. Here, we want to determine the value of
m such that when m balls are thrown into n bins, with high probability every bin receives at
least one ball. Equivalently, we want to determine the value of m such that the probability of
the minimum load being 0 is small.

• Let X(µ) be the Poisson distribution with mean µ. Find the value of m such that, for
µ = m/n, we have

P
[
X(µ) = 0

]
6

1

n3

• Let X be the Poisson distribution for the µ determined above. Let X(i) be the i-th
independent copy of the distribution X. Prove the following bound.

P
[
min

{
X(1),X(2), . . . ,X(n)

}
= 0

]
6

1

n2

• Use the Poisson Approximation Theorem to prove the following bound. For large enough
n and Lmin := min {L1,L2, . . . ,Ln}

P [Lmin > 1] > 1− 1

n

Solution.
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4. A Fun Ball and Bins Problem. (20 points) Let us consider a fun problem. Suppose we
are interested in ensuring that every bin received at least 2 balls. Let us get you started on
how to think about this fun problem.

Let X(µ) be the Poisson distribution with mean µ. Find the value ofm such that, for µ = m/n
and positive integers m and n, we have

P
[
X(µ) ∈ {0, 1}

]
6

1

n3

Solution.
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5. Towards proving Poisson Approximation Theorem. (20 points) Let me get you started
towards proving the simpler version of the Poisson approximation theorem that was taught
in the class. Let X be the Poisson distribution with mean µ, where µ = m/n. Prove the
following inequality

P
[
X(1) + X(2) +· · ·+ X(n) = m

]
=

(
m

e

)m 1

m!
>

1

e
√
m

(Remark: Use the Stirling’s approximation taught in the class for the final inequality.)

Solution.
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Collaborators :
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