Lecture 39: Large Sets fool Large Linear Tests
Intuition

- Let $A \subseteq \{0, 1\}^n$ be a set of size 2^{n-t}
- We want to claim that the uniform distribution over the set A fools (most) large linear tests
- For example, consider A to be the set of n-bit strings that start with t 0s
- Consider any linear test S such that the support of S is restricted only to the first t indices. Then, the output of this linear test is completely biased (it always outputs 0)
- On the other hand, if S has support that is larger than t, then the output of the linear test is uniformly random bit. That is, the uniform distribution over A fools this linear test
- In general, we cannot expect to fool all large support linear tests. For example, we consider A to be the n-bit strings with even number of 1s. The uniform distribution over A does not fool the linear test corresponding to $S = N - 1$
Large Sets fool Large Linear Tests

- Let $A \subseteq \{0, 1\}^n$ such that $|A| = 2^{n-t}$
- Let $\mathbf{1}_A$ be the indicator variable for the subset A
- Note that the uniform distribution over A is represented by the function
 \[\frac{1}{|A|} \mathbf{1}_A \]
- Note that the bias of the output of the linear test S is
 \[\text{bias}_A(S) := \frac{N}{|A|} \mathbf{1}_A(S) \]
- Let us evaluate the sum of all the biases corresponding to linear tests S such that $|S| = k$
 \[\sum_{S \in \{0,1\}^n : |S| = k} \text{bias}_A(S)^2 = \left(\frac{N}{|A|} \right)^2 \sum_{S \in \{0,1\}^n : |S| = k} \mathbf{1}_A(S)^2 \]
Recall that the KKL Lemma states that, for any $\delta \in (0, 1)$ and $f : \{0, 1\}^n \rightarrow \{+1, 0, -1\}$, we have

$$\sum_{S \in \{0,1\}^n} \delta^{\left|S\right|} \hat{f}(S)^2 \leq \mathbb{P} \left[f(x) \neq 0 : x \leftarrow \{0, 1\}^n \right]^{2/1+\delta}$$

Note that, we have

$$LHS \geq \sum_{S \in \{0,1\}^n : |S|=k} \delta^k \hat{f}(S)^2$$

So, we conclude that

$$\sum_{S \in \{0,1\}^n : |S|=k} \hat{f}(S)^2 \leq \frac{1}{\delta^k} \mathbb{P} \left[f(x) \neq 0 : x \leftarrow \{0, 1\}^n \right]^{2/1+\delta}$$
Substituting \(f = 1_{\{A\}} \), we get

\[
\sum_{S \in \{0,1\}^n : |S| = k} \text{bias}_A(S)^2 \leq \left(\frac{N}{|A|} \right)^2 \cdot \frac{1}{\delta^k} \cdot \left(\frac{|A|}{N} \right)^{2/1+\delta}
\]

\[
= \frac{1}{\delta^k} \cdot \left(\frac{N}{|A|} \right)^{2\delta/1+\delta}
\]

\[
\leq \frac{1}{\delta^k} \left(\frac{N}{|A|} \right)^{2\delta} = 2^{2t\delta - k \lg e \ln \delta}
\]

Now, we choose \(\delta \) that minimizes the RHS above. That value of \(\delta \) is \(\delta = k \lg e / 2t \)

Substituting this value of \(\delta \) we get

\[
\sum_{S \in \{0,1\}^n : |S| = k} \text{bias}_A(S)^2 \leq \left(\frac{2et}{k \lg e} \right)^k
\]
The average bias is

\[
\left(\binom{n}{k}\right)^{-1} \sum_{S \in \{0,1\}^n : |S| = k} \text{bias}_A(S)^2 \leq \left(\frac{2e}{\lg e} \cdot \frac{t}{n}\right)^k = \left(O\left(\frac{t}{n}\right)\right)^k
\]
The bound we obtain above is essentially tight

Consider A such that the first t bits of its elements are all 0

Note that $\binom{t}{k}$ linear tests have bias 1

The remaining linear tests have bias 0

So, the average bias is

$$\binom{t}{k} \binom{n}{k}^{-1} \geq \left(\frac{1}{e} \cdot \frac{t}{n}\right)^k$$