
Lecture 38: Hypercontractivity
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Overview

Today we shall learn about an advanced tool in Fourier
Analysis called Hypercontractivity. We shall see the theorem
and a few of its applications. However, we shall not see the
proof
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Lp Norm I

For p > 1 and any function f : {0, 1}n → R, we define

Lp(f ) :=

 1
N

∑
x∈{0,1}n

∣∣f (x)∣∣p


1/p

There are two interesting properties of the Lp(·) norm

Lemma (Monotonicity of Norm)

For 1 6 p < q and f : {0, 1}n → R we have

Lp(f ) 6 Lq(f )

Moreover, equality holds if and only if f is a constant function
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Lp Norm II

Further, we also have the “Contractivity Property.” The
smoothed version of the function has a smaller norm than the
original function.

Lemma (Contractivity)

For p > 1 and ρ ∈ [0, 1], we have

Lp(Tρ(f )) 6 Lp(f )

Equality holds if and only if ρ = 0 or f is a constant function.
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Hypercontractivity I

By the “contractivity property” we know that

Lp(Tρ(f )) 6 Lp(f )

By monotonicity of norm, we know that

Lp(Tρ(f )) 6 Lq(Tρ(f )),

where q > p

However, how does Lp(f ) compare with Lq(Tρ(f ))?

Answer: It depends.

Hypercontractivity. Even the q-th norm of Tρ(f ) is smaller

than the p-th norm of f if ρ 6
√

p−1
q−1 .
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Hypercontractivity II

Formally, we have the following result

Theorem (Hypercontractivity)

Let f : {0, 1}n → R be an arbitrary function. For 1 6 p < q and

ρ 6
√

p−1
q−1 we have

Lq(Tρ(f )) 6 Lp(f )

Proof Outline.
Prove the statement for 1 6 p < q = 2 (The proof of this
statement proceeds by induction on n and the base case of
n = 1 is the toughest case)
Reduce the proof of the statement for the case 2 6 p < q to
the case of 1 6 p < q = 2 (using Hölder’s inequality)
Reduce the proof of the statement for the case 1 6 p < 2 < q
to the two cases above (using the homomorphic property of
the noise operator)
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Special Case of q = 2

Let us state the hypercontractivity theorem for the special case
of 1 6 p < q = 2
Suppose p = 1+ δ, where δ ∈ [0, 1)

Suppose ρ =
√

p−1
q−1 = δ1/2

The hypercontractivity theorem states that

L2(Tρ(f )) 6 Lp(f )

Squaring both sides and applying Parseval’s identity to the
LHS, we get

∑
S∈{0,1}n

δ|S|f̂ (S)2 6

 1
N

∑
x∈{0,1}n

∣∣f (x)∣∣1+δ


2/1+δ
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KKL Lemma I

Let f : {0, 1}n → {+1, 0,−1}. Recall that we denoted boolean
function by functions with range {+1,−1}. Suppose we want
to denote boolean functions that are only defined on a subset
of {0, 1}n. In this case, we use functions
{0, 1}n → {+1, 0,−1}. Wherever the function is not defined,
it evaluates to 0; otherwise, it takes value ∈ {+1,−1}.
The KKL in “KKL Lemma” stands for “Kahn-Kalai-Linial”

Note that, for a function f : {0, 1}n → {+1, 0,−1}, we have

Lp(f ) = P
[
f (x) 6= 0 : x $←{0, 1}n

]1/p
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KKL Lemma II

From the hypercontractivity theorem, we directly have the
KKL Lemma

Lemma (KKL Lemma)

For any function f : {0, 1}n → {+1, 0,−1} and δ ∈ [0, 1) we have∑
S∈{0,1}n

δ|S |f̂ (S)2 6 P
[
f (x) 6= 0 : x $←{0, 1}n

]2/1+δ
Intuition. Note that the RHS is � P

[
f (x) 6= 0 : x $←{0, 1}n

]
because δ < 1, i.e., the ratio of the support of f to the size of
the entire sample space N.
On the other hand, the LHS is dominated by the Fourier
coefficients on S that have a small support.
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KKL Lemma III

So, the inequality states that the total mass of the Fourier
coefficients on S that have a small support is � the ratio of
the support of f to the size of the entire sample space N.
Effectively, this lemma states that if a boolean function has a
small support then most of its mass of the Fourier coefficients
is on the S that have a large support.

In the next lecture, we shall prove a formal result that makes
this intuition concrete. We shall show that the uniform
distribution on any large subset A ⊆ {0, 1}n fools most large
linear tests.
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