
Lecture 37: Noise Operator
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Overview

Today we shall introduce the basics of the “noise operator”
This operator is crucial to one of the most powerful technical
tools in Fourier Analysis, namely, the Hypercontractivity
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Noise Operator

Let Nε be a probability distribution over the sample space
{0, 1}n such that

P [Nε = x ] = (1− ε)n−|x |ε|x |

Here |x | represents the number of 1s in x (or, equivalently, the
Hamming weight of x)
Intuitively, imagine a channel through which 0n is being fed as
input. The channel converts each bit independently as follows.
It converts 0 7→ 1 with probability ε; and 1 7→ 0 with
probability (1− ε). Note that the probability of the output
being x is (1− ε)n−|x |ε|x |

Our objective is to prove that

biasNε(S) = (1− 2ε)|S |

We shall prove this result using a highly modular and elegant
approach
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Computation of the Bias I

For 1 6 i 6 n, let Nε,i be the probability distribution defined
below

P
[
Nε,i = x

]
=


(1− ε), if x = 0n

ε, if x = δi

0, otherwise

Intuitively, 0n is fed through a channel. All bits except the i-th
bit is left unchanged. The i-th bit is converted as follows. It
maps 0 7→ 1 with probability ε; and 1 7→ 0 with probability
(1− ε).
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Computation of the Bias II
Let us compute the bias of this distribution. For any
S ∈ {0, 1}n, note that, if Si = 0, we have

biasNε,i
(S) = 1

For any S ∈ {0, 1}, if Si = 1, we have

biasNε,i
(S) = (1− ε)− ε = (1− 2ε)

Succinctly, we can express this as

biasNε,i
(S) = (1− 2ε)Si

So, we can conclude that

bias⊕n
i=1 Nε,i

(S) = (1− 2ε)
∑n

i=1 Si = (1− 2ε)|S |

It is left as an exercise to prove that the distribution Nε is
identical to the distribution

⊕n
i=1 Nε,i
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Noisy Version of a Function

Let f : {0, 1}n → R be any function
Define the noisy version of f as follows

f̃ (x) = Tρ(x) := E
[
f (x + e) : e ∼ Nε

]
,

where ρ = 1− 2ε
So, we have

f̃ (x) =
∑

e∈{0,1}n
Nε(e)f (x + e) = N(Nε ∗ f )

Equivalently, we have f̃ = Nε ⊕ f (we emphasize that f need
not be a probability distribution to use the notation of ⊕ of
two functions)
Therefore, we get

bias
f̃
(S) = biasNε(S) · biasf (S) = ρ|S |biasf (S)

That is, we conclude that

T̂ρ(f )(S) = ρ|S |f̂ (S)
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