Lecture 35: Min-Entropy Extraction via Smal-bias Masking

- For a probability distribution \mathbb{X} over $\{0,1\}^{n}$, we defined the bias of \mathbb{X} with respect to a linear test $S \in\{0,1\}^{n}$ as follows

$$
\operatorname{bias}_{\mathbb{X}}(S)=\mathbb{P}[S \cdot \mathbb{X}=0]-\mathbb{P}[S \cdot \mathbb{X}=1]
$$

- The probability that two independent samples from \mathbb{X} and \mathbb{Y} turn out to be identical is defined as

$$
\operatorname{col}(\mathbb{X}, \mathbb{Y})=\frac{1}{N} \sum_{S \in\{0,1\}^{n}} \operatorname{bias}_{\mathbb{X}}(S) \operatorname{bias} \mathbb{Y}(S)
$$

- $\mathbb{X} \oplus \mathbb{Y}$ is a probability distribution over $\{0,1\}^{n}$ such that $\mathbb{P}[\mathbb{X} \oplus \mathbb{Y}=z]$ is the probability that two samples according to \mathbb{X} and \mathbb{Y} add up to z

$$
\text { bias }_{\mathbb{X} \oplus \mathbb{Y}}=\text { bias }_{\mathbb{X}} \text { bias }_{\mathbb{Y}}
$$

- The statistical distance between two probability distributions \mathbb{X} and \mathbb{Y} over the sample space $\{0,1\}^{n}$ is

$$
2 \mathrm{SD}(\mathbb{X}, \mathbb{Y})=\sum_{x \in\{0,1\}^{n}}|\mathbb{P}[\mathbb{X}=x]-\mathbb{P}[\mathbb{Y}=x]|
$$

We showed that

$$
2 \mathrm{SD}(\mathbb{X}, \mathbb{Y}) \leqslant \ell_{2}\left(\operatorname{bias}_{\mathbb{X}}-\text { bias }_{\mathbb{Y}}\right)
$$

Example 1

- Let \mathbb{U} represent the uniform distribution over the sample space $\{0,1\}^{n}$
- Note that, we have

$$
\operatorname{bias}_{\mathbb{U}}(S)= \begin{cases}1, & \text { if } S=0 \\ 0, & \text { if } S \neq 0\end{cases}
$$

- In fact, $\operatorname{bias}_{\mathbb{X}}(0)=1$ for all probability distributions \mathbb{X}

Example 2

- Let $\mathbb{U}_{\langle v\rangle}$, for $v \in\{0,1\}^{n}$, represent the uniform distribution over the vector space spanned by $\{v\}$, i.e., the set $\{0, v\}$
- Let $\mathbb{U}_{\langle w\rangle}$, for $w \in\{0,1\}^{n}$, represent the uniform distribution over the vector space spanned by $\{w\}$, i.e., the set $\{0, w\}$
- Prove: $\mathbb{U}_{\langle v\rangle} \oplus \mathbb{U}_{\langle w\rangle}=\mathbb{U}_{\langle v, w\rangle}$.

Here, $\mathbb{U}_{\langle v, w\rangle}$ represents the uniform distribution over the set spanned by $\{v, w\}$. If $v=w$, then $\langle v, w\rangle=\{0, v\}$; otherwise $\langle v, w\rangle=\{0, v, w, v+w\}$.

- In general, for linearly independent vectors $v_{1}, v_{2}, \ldots, v_{k} \in\{0,1\}^{n}$, we have

$$
\mathbb{U}_{\left\langle v_{1}, \ldots, v_{k}\right\rangle}=\mathbb{U}_{\left\langle v_{1}\right\rangle} \oplus \cdots \oplus \mathbb{U}_{\left\langle v_{k}\right\rangle}
$$

- So, we conclude that

$$
\operatorname{bias}_{\mathbb{U}_{\left\langle v_{1}, \ldots, v_{k}\right\rangle}}=\operatorname{bias}_{\mathbb{U}_{\left\langle v_{1}\right\rangle}} \cdots \operatorname{bias}_{\mathbb{U}_{\left\langle v_{k}\right\rangle}}
$$

Example 2

- Prove: There exists a subset $T \subseteq\{0,1\}^{n}$ of size 2^{n-1} such that $\operatorname{bias}_{\mathbb{U}_{\langle v\rangle}}(S)=1$ if $S \in T$; otherwise $\operatorname{bias}_{\mathbb{U}_{\langle v\rangle}}(S)=0$.
- Think: Which S have $\operatorname{bias}_{\mathbb{U}_{\langle\nu\rangle} \oplus \mathbb{U}_{\langle w\rangle}}(S)=0$?

Recall: Min-Entropy Sources

- Let \mathbb{X} be a distribution over the sample space $\{0,1\}^{n}$
- We say that the distribution \mathbb{X} has min-entropy at least k if it satisfies the following condition. For any $x \in\{0,1\}^{n}$, we have

$$
\mathbb{P}[\mathbb{X}=x] \leqslant \frac{1}{2^{k}}=: \frac{1}{K}
$$

This constraint is succinctly represented as $\mathrm{H}_{\infty}(\mathbb{X}) \geqslant k$

- Intuition: The probability of any element according to the distribution \mathbb{X} is small. So, the outcome of \mathbb{X} is "highly unpredictable." Furthermore, \mathbb{X} associates non-zero probability to at least K elements in $\{0,1\}^{n}$.
- We had seen that the collision probability of a high min-entropy distribution is low.

$$
\operatorname{col}(\mathbb{X}, \mathbb{X})=\sum_{x \in\{0,1\}^{n}} \mathbb{P}[\mathbb{X}=x]^{2} \leqslant \sum_{x \in\{0,1\}^{n}} \mathbb{P}[\mathbb{X}=x] \frac{1}{K}=\frac{1}{K}
$$

This implies that

$$
\sum_{S \in\{0,1\}^{n}} \operatorname{bias}_{\mathbb{X}}(S)^{2} \leqslant \frac{N}{K}
$$

Or, equivalently, we write

$$
\sum_{S \in\{0,1\}^{n}: S \neq 0} \operatorname{bias}_{\mathbb{X}}(S)^{2} \leqslant \frac{N}{K}-1
$$

Succinctly, we write

$$
\ell_{2}^{*}\left(\operatorname{bias}_{\mathbb{X}}\right) \leqslant \sqrt{\frac{N}{K}-1}
$$

Here $\ell_{2}^{*}(f)$ is identical to the definition of $\ell_{2}(f)$ except that it excludes $f(0)^{2}$ in the sum

- Let \mathbb{Y} be a distribution over $\{0,1\}^{n}$
- We say that \mathbb{Y} is a small-bias distribution if

$$
\operatorname{bias}_{\mathbb{Y}}(S) \leqslant \varepsilon
$$

for all $0 \neq S \in\{0,1\}^{n}$

- Prove: A random probability distribution is a small-bias distribution with very high probability

Min-Entropy Extraction via Small-bias Masking

- Let \mathbb{X} be a min-entropy source with $\mathrm{H}_{\infty}(\mathbb{X}) \geqslant K$
- Let \mathbb{Y} be a small bias distribution such that $\operatorname{bias}_{\mathbb{Y}}(S) \leqslant \varepsilon$, for all $0 \neq S \in\{0,1\}^{n}$
- We want to say that $\mathbb{X} \oplus \mathbb{Y}$ is very close to the uniform distribution \mathbb{U} over the sample space $\{0,1\}^{n}$.

$$
\begin{aligned}
2 \mathrm{SD}(\mathbb{X} \oplus \mathbb{Y}, \mathbb{U}) & \leqslant \ell_{2}\left(\operatorname{bias}_{\mathbb{X} \oplus \mathbb{Y}}-\operatorname{bias}_{\mathbb{U}}\right) \\
& =\ell_{2}^{*}\left(\operatorname{bias}_{\mathbb{X} \oplus \mathbb{Y}}-\operatorname{bias}_{\mathbb{U}}\right) \\
& =\ell_{2}^{*}\left(\operatorname{bias}_{\mathbb{X} \oplus \mathbb{Y}}\right) \\
& =\ell_{2}^{*}\left(\operatorname{bias}_{\mathbb{X}} \mathrm{bias}_{\mathbb{Y}}\right) \\
& \leqslant \varepsilon \ell_{2}^{*}\left(\operatorname{bias}_{\mathbb{X}}\right) \\
& \leqslant \varepsilon \sqrt{\frac{N}{K}-1}
\end{aligned}
$$

