Lecture 34: Tackling Probability Distributions and XOR Lemma

Overview

- Until now, we have treated a distribution X over $\{0,1\}^n$ as the function $X \colon \{0,1\}^n \to \mathbb{R}$ such that $X(\omega) := \mathbb{P}[X = \omega]$
- However, for intuition purposes, we want to develop concepts that are unique to distributions that are analogous to the concepts in Fourier analysis of functions

Bias of a Distribution: Intuition

- Let X be a distribution over $\{0,1\}^n$
- ullet Consider the following algorithm for a fixed $S \in \{0,1\}^n$

 - ② Output $S \cdot x$
- The output distribution is over the sample space $\{0,1\}$. Let p_0 represent the probability that the output of this algorithm is 0; and, p_1 represent the probability of the output being 1.
- We want to say that the output is "unbiased" (or, "has bias 0") if $p_0 = p_1 = 1/2$. Similarly, we want to say that the output "has bias 1" if $p_0 = 1$ and $p_1 = 0$. Finally, we want to say that the output "has bias -1" if $p_0 = 0$ and $p_1 = -1$.
- Interpolating this intuition, we want to say that the bias of the output distribution of the algorithm above is $p_0 p_1$

Bias: Definition

Definition

Let X be a distribution over the sample space $\{0,1\}^n$. For any $S \in \{0,1\}^n$, we define the bias of X with respect to (the linear test) S as

$$\mathsf{bias}_X(S) := N\widehat{X}(S)$$

Collision Probability

- Let X and Y be two probability distributions over $\{0,1\}^n$
- \bullet col(X,Y) refers to the probability that two samples drawn according to X and Y turn out to be identical. We know that

$$\operatorname{col}(X,Y) = N\langle X,Y \rangle = N \sum_{S \in \{0,1\}^n} \widehat{X}(S) \cdot \widehat{Y}(S)$$

Equivalently, we have

$$\operatorname{col}(X,Y) = \frac{1}{N} \sum_{S \in \{0,1\}^n} \operatorname{bias}_X(S) \cdot \operatorname{bias}_Y(S)$$

Bias of XOR of two Distributions

- Recall that we had defined the distribution $(X \oplus Y)$ as a distribution over $\{0,1\}^n$ that is identical to the function N(X * Y).
- We had also proven that

$$(\widehat{X*Y})(S) = \widehat{X}(S) \cdot \widehat{Y}(S)$$

So, we can conclude that

$$\mathsf{bias}_{X \oplus Y}(S) = \mathsf{bias}_{X}(S) \cdot \mathsf{bias}_{Y}(S)$$

• For two function $f,g \colon \{0,1\}^n \to \mathbb{R}$, let us define $L_1(f-g)$ as follows

$$L_1(f-g) := \frac{1}{N} \sum_{x \in \{0,1\}^n} |f(x) - g(x)|$$

ullet We can upper-bound $L_1(f-g)$ using \widehat{f} and \widehat{g} as follows

$$L_{1}(f - g) = \frac{1}{N} \sum_{x \in \{0,1\}^{n}} |f(x) - g(x)|$$

$$\leq \frac{1}{N} \sqrt{N} \cdot \left(\sum_{x \in \{0,1\}^{n}} (f(x) - g(x))^{2} \right)^{1/2}, \text{ by Cauchy-Schw}$$

$$= \left(\frac{1}{N} \sum_{x \in \{0,1\}^{n}} (f(x) - g(x))^{2} \right)^{1/2}$$

$$= \left(\frac{1}{N} \sum_{x \in \{0,1\}^n} (f - g)(x)^2\right)^{1/2}$$

$$= \left(\sum_{S \in \{0,1\}^n} (\widehat{f - g})(S)^2\right)^{1/2}, \text{ by Parseval's}$$

$$= \left(\sum_{S \in \{0,1\}^n} (\widehat{f}(S) - \widehat{g}(S))^2\right)^{1/2}$$

$$=: \ell_2(\widehat{f} - \widehat{g})$$

• We can obtain a similar result for statistical distance, which is the analogue of $L_1(\cdot)$ for functions

$$2SD(X,Y) := \sum_{x \in \{0,1\}^n} |X(x) - Y(x)|$$

So, we have

$$2\mathrm{SD}(X,Y) = NL_1(X-Y) \leqslant N\ell_2(\widehat{X}-\widehat{Y}) = \ell_2(\mathsf{bias}_X - \mathsf{bias}_Y)$$

That is,

$$2\mathrm{SD}(X,Y) \leqslant \sum_{S \in \{0,1\}^n} (\mathsf{bias}_X(S) - \mathsf{bias}_Y(S))^2$$

Summary

Functions	Probability
$\widehat{X}(S)$	$bias_X(S) \coloneqq N\widehat{X}(S)$
$\langle X,Y \rangle = \sum_{S \in \{0,1\}^n} \widehat{X}(S) \widehat{Y}(S)$	$ col(X,Y) = \frac{1}{N} \sum_{S \in \{0,1\}^n} bias_X(S) bias_Y(S) $
$(\widehat{X*Y})(S) = \widehat{X}(S)\widehat{Y}(S)$	$bias_{X \oplus Y}(S) = bias_X(S) bias_Y(S)$
$L_1(X-Y) \leqslant \ell_2(\widehat{X}-\widehat{Y})$	$2\mathrm{SD}\left(X,Y ight)\leqslant\ell_2(bias_X-bias_Y)$

- Let $\mathbb X$ be a distribution over $\{0,1\}$ such that $\mathbb P\left[\mathbb X=0\right]=\frac{1+\varepsilon}{2}$ and $\mathbb P\left[X=1\right]=\frac{1-\varepsilon}{2}$
- Note that n = 1 and $bias_X(0) = 1$ and $bias_X(1) = \varepsilon$
- Let $\mathbb{S}_n = \mathbb{X}^{(1)} \oplus \mathbb{X}^{(2)} \oplus \cdots \oplus \mathbb{X}^{(n)}$
- Note that

$$\mathsf{bias}_{\mathcal{S}}(0) = \mathsf{bias}_{\mathbb{X}^{(1)}}(0) \cdot \mathsf{bias}_{\mathbb{X}^{(2)}}(0) \cdots \mathsf{bias}_{\mathbb{X}^{(n)}}(0) = 1$$

Note that

$$\mathsf{bias}_{\mathcal{S}}(1) = \mathsf{bias}_{\mathbb{X}^{(1)}}(1) \cdot \mathsf{bias}_{\mathbb{X}^{(2)}}(1) \cdots \mathsf{bias}_{\mathbb{X}^{(n)}}(1) = \varepsilon^n$$

• From the biases, we can conclude that $\mathbb{P}\left[\mathbb{S}_n=0\right]=\frac{1+\varepsilon^n}{2}$ and $\mathbb{P}\left[\mathbb{S}_n=1\right]=\frac{1-\varepsilon^n}{2}$

• Further, we can conclude that \mathbb{S}_n is very close to the uniform distribution over $\{0,1\}$, namely $\mathbb{U}_{\{0,1\}}$. Note that $\mathsf{bias}_{\mathbb{U}_{\{0,1\}}}(0)=1$ and $\mathsf{bias}_{\mathbb{U}_{\{0,1\}}}(1)=0$. So, the statistical distance between \mathbb{S}_n and $\mathbb{U}_{\{0,1\}}$ is upper-bounded as follows.

$$2SD\left(\mathbb{S}_n, \mathbb{U}_{\{0,1\}}\right) \leqslant \ell_2(\mathsf{bias}_{\mathbb{S}_n} - \mathsf{bias}_{\mathbb{U}_{\{0,1\}}}) = \ell_2((1, \varepsilon^n) - (1, 0)) = \varepsilon^n$$

That is, S_n is getting close to the uniform distribution exponentially fast!

• In general, we can consider the sum $\mathbb{S}_n = \mathbb{X}_1 \oplus \cdots \oplus \mathbb{X}_n$, where $\mathbb{X}_1, \ldots, \mathbb{X}_n$ are independent distributions over $\{0,1\}$ with bias $\varepsilon_1, \ldots, \varepsilon_n$, respectively. Then, we shall have bias $\mathbb{S}_n(1) = \varepsilon_1 \varepsilon_2 \cdots \varepsilon_n$.

• It is extremely crucial that the distributions $\mathbb{X}_1,\ldots,\mathbb{X}_n$ are independent. Otherwise, we cannot multiply the biases to obtain the bias of the sum \mathbb{S}_n . For example, let $(\mathbb{X}_1,\ldots,\mathbb{X}_n)$ be uniform random variables over $\{0,1\}^n$ such that their parity is 0 (that is, they have even number of 1s). Each random variable has $\mathrm{bias}_{\mathbb{X}_n}(1)=0$. However, the random variable \mathbb{S}_n has $\mathrm{bias}_{\mathbb{S}_n}(1)=1$.

A Combinatorial Proof.

• To compute the bias $bias_{\mathbb{S}_n}(1)$, we need to estimate

$$\begin{split} & \mathbb{P}\left[\mathbb{S}_{n}=0\right] - \mathbb{P}\left[\mathbb{S}_{n}=1\right] \\ & = \sum_{i \text{ is even}} \binom{n}{i} \left(\frac{1-\varepsilon}{2}\right)^{i} \left(\frac{1+\varepsilon}{2}\right)^{n-i} - \sum_{i \text{ odd}} \binom{n}{i} \left(\frac{1-\varepsilon}{2}\right)^{i} \left(\frac{1+\varepsilon}{2}\right)^{n-i} \\ & = \sum_{i=1}^{n} \binom{n}{i} (-1)^{i} \left(\frac{1-\varepsilon}{2}\right)^{i} \left(\frac{1+\varepsilon}{2}\right)^{n-i} \\ & = \left(\frac{1+\varepsilon}{2} - \frac{1-\varepsilon}{2}\right)^{n} = \varepsilon^{n} \end{split}$$

Note that this conclusion followed so easily using Fourier analysis