Lecture 32: Convolution

・ロン ・回 と ・ ヨ と ・ ヨ と …

э

- In today's lecture we shall study about an important property of the Fourier basis functions that makes them special, namely, additive homomorphism
- This additive homomorphism property shall help us prove interesting properties of an important technical tools in Fourier analysis called Convolution

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let $f: \{0,1\}^n \to \mathbb{R}$ be an arbitrary function
- We say that f exhibits "additive homomorphism" if, for all $x, y \in \{0, 1\}^n$, we have

$$f(x+y) = f(x) \cdot f(y)$$

• Observe that all the Fourier basis functions χ_S satisfy this additive homomorphism property

- Let $F = \{f_0, f_1, \dots, f_{N-1}\}$ be a set of functions $\{0, 1\}^n \to \mathbb{R}$ such that
 - Orthonormality. The functions in *F* are orthonormal with respect to an "inner-product"
 - **2** Symmetry. For all $i \in \{0, ..., N\}$ and $x \in \{0, 1\}^n$, we have $f_i(x) = f_x(i)$
 - 3 Additive Homomorphism. For all $x, y \in \{0, 1\}^n$, and $i \in \{0, ..., N-1\}$, we have $f_i(x + y) = f_i(x) \cdot f_i(y)$
- Any analysis that we perform in this course extends to any basis F with the properties mentioned above
- Think: These properties imply that $f_0(x) = 1$, for all $x \in \{0, 1\}^n$!

イロト イポト イヨト イヨト 二日

Intuition of the Convolution Operator

- Let X, Y be probability distributions over $\{0, 1\}^n$
- Consider the following algorithm

```
1 Sample x \sim X and sample y \sim Y
```

2 Output $z = x \oplus y$

- Note that the output of this algorithm is a distribution over the sample space {0,1}ⁿ. Let us represent the output distribution of this algorithm by Z (also referred to as the distribution X ⊕ Y)
- Question: What is the $\mathbb{P}[Z = z]$?
 - Note that x can be anything in {0,1}ⁿ. However, given x and z, there is a unique y = x ⊕ z such that x ⊕ y = z

• So, we have

$$\mathbb{P}[Z=z] = \sum_{x \in \{0,1\}^n} \mathbb{P}[X=x] \mathbb{P}[Y=x \oplus z]$$

• The distribution Z is (a scaling) of the convolution of the distributions X and Y.

Convolution

- Let $f, g: \{0,1\}^n \to \mathbb{R}$ be two functions
- ② The convolution of f and g is the function (f * g): {0,1}ⁿ → ℝ defined as follows

$$(f * g)(x) = \frac{1}{N} \sum_{y \in \{0,1\}^n} f(y) \cdot g(x - y)$$

- Solution Note that if X and Y are two function representing probability distributions over {0,1}ⁿ, then N(X ∗ Y) is the function corresponding to the probability distribution X ⊕ Y
- Once that the Convolution is a bilinear operator!

- 4 同 6 4 日 6 4 日 6

Fourier Transform of Convolution I

- Given two function f and g, we are interested in expressing the function $\widehat{(f * g)}$ using the functions \widehat{f} and \widehat{g}
- We shall prove the following result

Lemma

For all functions $f, g \colon \{0,1\}^n \to \mathbb{R}$ and $S \in \{0,1\}^n$, we have

$$\widehat{(f * g)}(S) = \widehat{f}(S) \cdot \widehat{g}(S)$$

• We shall provide a direct proof for this result

$$\widehat{(f * g)}(S) = \frac{1}{N} \sum_{x \in \{0,1\}^n} (f * g)(x) \chi_S(x)$$

= $\frac{1}{N} \sum_{x \in \{0,1\}^n} \frac{1}{N} \sum_{y \in \{0,1\}^n} f(y) g(x - y) \chi_S(x)$

Convolution

Fourier Transform of Convolution II

-

$$= \frac{1}{N^2} \sum_{x \in \{0,1\}^n} \sum_{y \in \{0,1\}^n} f(y) g(x-y) \chi_{\mathcal{S}}(y) \chi_{\mathcal{S}}(x-y)$$

The final step above is a consequence of the additive homomorphism of the function χ_{S} . Let us continue with the simplification.

$$\widehat{(f * g)}(S) = \frac{1}{N^2} \sum_{x \in \{0,1\}^n} \sum_{y \in \{0,1\}^n} f(y)g(x - y)\chi_S(y)\chi_S(x - y)$$

$$= \frac{1}{N^2} \sum_{y \in \{0,1\}^n} f(y)\chi_S(y) \sum_{r \in \{0,1\}^n} g(r)\chi_S(r)$$

$$= \left(\frac{1}{N} \sum_{y \in \{0,1\}^n} f(y)\chi_S(y)\right) \left(\frac{1}{N} \sum_{r \in \{0,1\}^n} g(r)\chi_S(r)\right)$$

$$= \widehat{f}(S) \cdot \widehat{g}(S)$$

Convolution

- We can succinctly summarize this result as follows: $\widehat{(f * g)} = \widehat{f} \cdot \widehat{g}$
- Exercise: Express $\widehat{f \cdot g}$ using \widehat{f} and \widehat{g}

- - < 同 ▶ - < 三 ▶

- Let $f: \{0,1\}^n \to \mathbb{R}$
- Define $g: \{0,1\}^n \to \mathbb{R}$ as g(x) = f(x-c), for some $c \in \{0,1\}^n$
- We are interested in expressing $\widehat{g}(S)$ using $\widehat{f}(S)$ and c

$$\widehat{g}(S) = \frac{1}{N} \sum_{x \in \{0,1\}^n} g(x) \chi_S(x) \\
= \frac{1}{N} \sum_{x \in \{0,1\}^n} f(x-c) \chi_S(x-c) \chi_S(c) \\
= \chi_S(c) \frac{1}{N} \sum_{x \in \{0,1\}^n} f(x-c) \chi_S(x-c) \\
= \chi_c(S) \cdot \widehat{f}(S)$$

П

- That is, we conclude that $\widehat{g} = \chi_c \cdot \widehat{f}$. Recall that $\chi_c(S) \in \{+1, -1\}$. So, $\chi_c(S) \cdot \widehat{f}(S)$ is either $\widehat{f}(S)$ or $-\widehat{f}(S)$.
- Intuition: If g is an offset of the function f, then \hat{g} is a "twisting/rotation" of the function \hat{f} . So, by studying the magnitudes of the Fourier transform, we can study the function "independent of their offsets"
- Additional Perspective: In fact, this result also implies that g can be rewritten as $N(\widehat{\chi_c} * f)$