Lecture 29: Discrete Fourier Analysis on the Boolean Hypercube (Introduction)

- Functions with domain $\{0,1\}^{n}$ and range \mathbb{R}
- Let $f:\{0,1\}^{n} \rightarrow \mathbb{R}$
- We shall always use $N=2^{n}$
- Any n-bit binary string shall be canonically interpreted as an integer in the range $\{0,1, \ldots, N-1\}$
- For any function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ we shall associate the following unique vector in \mathbb{R}^{N}

$$
(f(0), f(1), \ldots, f(N-1))
$$

Kronecker Basis

- For $i \in\{0,1, \ldots, N-1\}$, we define the function $\delta_{i}:\{0,1\}^{n} \rightarrow \mathbb{R}$ as follows

$$
\delta_{i}(x)= \begin{cases}1, & \text { if } x=i \\ 0, & \text { otherwise }\end{cases}
$$

- Note that the functions $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{N-1}\right\}$ form a basis for \mathbb{R}^{N}
- Any function f can be expressed as a linear combination of these basis functions as follows

$$
f=f(0) \delta_{0}+f(1) \delta_{1}+\cdots+f(N-1) \delta_{N-1}
$$

- Our goal is to study the function f in a new basis, namely, the "Fourier Basis," that shall be introduced next. We emphasize that this basis need not be unique

Fourier Basis Functions

- For $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right) \in\{0,1\}^{n}$, we define the following function

$$
\chi_{S}(x):=(-1)^{\sum_{i=1}^{n} s_{i} \cdot x_{i}}
$$

- Several introductory materials on Fourier analysis interpret S as a subset of $\{1,2, \ldots, n\}$. Although, the definition presented here is equivalent to this interpretation, I personally prefer this notation because it generalized to other domains.

An Example

- Suppose $n=3$ and we are working with functions $f:\{0,1\}^{n} \rightarrow \mathbb{R}$
- Note that there are 8 different Fourier basis functions

$$
\begin{aligned}
& \chi_{000}(x)=(-1)^{0}=1 \\
& \chi_{100}(x)=(-1)^{x_{1}} \\
& \chi_{010}(x)=(-1)^{x_{2}} \\
& \chi_{110}(x)=(-1)^{x_{1}+x_{2}} \\
& \chi_{001}(x)=(-1)^{x_{3}} \\
& \chi_{101}(x)=(-1)^{x_{1}+x_{3}} \\
& \chi_{011}(x)=(-1)^{x_{2}+x_{3}} \\
& \chi_{111}(x)=(-1)^{x_{1}+x_{2}+x_{3}}
\end{aligned}
$$

Lemma

$$
\sum_{x \in\{0,1\}^{n}} \chi_{R}(x)= \begin{cases}N, & \text { if } R=0 \\ 0, & \text { otherwise }\end{cases}
$$

Proof:

- Suppose $R=0$, then we have

$$
\sum_{x \in\{0,1\}^{n}} \chi_{R}(x)=\sum_{x \in\{0,1\}^{n}} 1=N
$$

- Suppose $R \neq 0$. Let $\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$ be the set of indices $\left\{i: R_{i}=1\right\}$

$$
\begin{aligned}
\sum_{x \in\{0,1\}^{n}} \chi_{R}(x)= & \sum_{x \in\{0,1\}^{n}}(-1)^{R_{1} x_{1}+\cdots+R_{n} x_{n}} \\
= & \sum_{x \in\{0,1\}^{n}}(-1)^{R_{i_{1} x_{1}}+\cdots+R_{i r} x_{i r}} \\
= & \sum_{x_{-i_{1}} \in\{0,1\}^{n-1}}(-1)^{R_{i_{2}} x_{i_{2}}+\cdots+R_{i_{r} x_{i r}}} \sum_{x_{i_{1}} \in\{0,1\}}(-1)^{x_{i_{1}}} \\
= & \sum_{x_{-i_{1}} \in\{0,1\}^{n-1}}(-1)^{R_{i_{2}} x_{i_{2}}+\cdots+R_{i_{r}} x_{i r}}\left((-1)^{0}+(-1)^{1}\right) \\
= & \sum_{x_{-i_{1}} \in\{0,1\}^{n-1}}(-1)^{R_{i_{2}} x_{i_{2}}+\cdots+R_{i_{r}} x_{i_{r}}} \cdot 0=0
\end{aligned}
$$

Inner Product

Definition (Inner Product)

The inner-product of two functions $f, g:\{0,1\}^{n} \rightarrow \mathbb{R}$ is defined as follows

$$
\langle f, g\rangle:=\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x) g(x)
$$

Orthonormality of the Basis Functions

Lemma

$$
\left\langle\chi_{s}, \chi_{T}\right\rangle= \begin{cases}1, & \text { if } S=T \\ 0, & \text { otherwise }\end{cases}
$$

Proof:
-

$$
\begin{aligned}
\left\langle\chi_{S}, \chi_{T}\right\rangle & =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} \chi_{S}(x) \chi_{T}(x) \\
& =\frac{1}{N} \sum_{x \in\{0,1\}^{n}}(-1)^{\left(S_{1}+T+1\right) x_{1}+\ldots+\left(S_{n}+T_{n}\right) x_{n}}
\end{aligned}
$$

- Note that if $S_{i}=T_{i}$ then $(-1)^{\left(S_{i}+T_{i}\right) x_{i}}=1$; otherwise $(-1)^{\left(S_{i}+T_{i}\right) x_{i}}=(-1)^{x_{i}}$

Orthonormality of the Basis Functions

- Define R such that $R_{i}=1$ if $S_{i} \neq T_{i}$; otherwise $R_{i}=0$
- Then, the right-hand side expression becomes

$$
\begin{aligned}
\left\langle\chi_{S}, \chi_{T}\right\rangle & =\frac{1}{N} \sum_{x \in\{0,1\}^{n}}(-1)^{R_{1} x_{1}+\cdots+R_{n} x_{n}} \\
& =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} \chi_{R}(x) \\
& = \begin{cases}\frac{1}{N} \cdot N, & \text { if } R=0 \\
\frac{1}{N} \cdot 0, & \text { otherwise }\end{cases}
\end{aligned}
$$

- Note that $R=0$ if and only if $S=T$. This observation completes the proof

