
Lecture 23: Lovász Local Lemma
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Introduction

Let B1, . . . ,Bn be indicator variables for bad events in an
experiment
Suppose that each bad event is unlike, that is, we have
P [Bi ] 6 p < 1, for all i ∈ {1, . . . , n}
Our objective is to avoid all the bad events

Observe that if P
[
B1, . . . ,Bn

]
> 0 then there exists a way to

avoid all the bad events simultaneously
Suppose that all the bad events {B1, . . . ,Bn} are independent
Then, it is easy to see that

P
[
B1, . . . ,Bn

]
> (1− p)n > 0

Lovász Local Lemma shall help us conclude the same even in
the presence of “limited dependence” between the events
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The Statement

Theorem
Let (B1, . . . ,Bn) be the joint distribution of bad events. For each
Bi , where i ∈ {1, . . . , n}, we have P [Bi ] 6 p and each event Bi

depends on at most d other bad events. If ep(d + 1) 6 1, then

P
[
B1, . . . ,Bn

]
>

(
1− 1

d + 1

)n

> 0

The condition is also stated sometimes as 4pd 6 1 instead of
ep(d + 1) 6 1.
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Application: k-SAT I

Let Φ be a k-SAT formula such that each variable occurs in at
most 2k−2/k different clauses
Experiment. Let Xi be an independent uniform random
variable that assigns the variable Xi a values from the set
{true, false}
Bad Events. For the j-th clause we have the bad event Bj

that is the indicator variable for the event: The j-th clause is
not satisfied
Probability of a Bad Event. For any j , note that

P
[
Bj

]
6

1
2k

Because there is at most one assignment of the variables in
the clause that makes it false. It is possible that there are no
assignments that make the clause false, so the failure
probability is 6 1/2k .

LLL



Application: k-SAT II

Dependence. Note that the j-th clause has k literals. The
variable associated with any literal occurs in 2k−2/k different
clauses. So, the bad event Bj can depend on at most
d = k · (2k−2/k) = 2k−2 other bad events

Conclusion. Note that 4pd = 1. So, Lovász Local Lemma
implies that there exists an assignment that satisfies all the
clauses in the formula simultaneously

Intuitively, this result states that if each variable is sufficiently
localized in its influence then formulas have satisfiable
assignments. Note that the probability p of each bas event
does not depend on the overall problem-instance size (i.e., the
total number of variables)
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Application: Vertex Coloring

Let G be a graph with degree at most ∆

Experiment. Let Xv be the random variable that represents
the color of the vertex v ∈ V (G ). Let Xv be a color chosen
uniformly (and independently) at random from the set
{1, . . . ,C}
Bad Event. For every edge e ∈ E (G ), we have a bad event
Be that is the indicator variable for both its vertices receiving
identical colors
Probability of the Bad Event. Note that we have
P [Be ] = 1

C .
Dependence. Note that the event Be does not depend on
any other Be′ if the edges e and e ′ do not share a common
vertex. So, the event Be depends on at most 2(∆− 1) other
bad events
Conclusion. A valid coloring exists if 4pd 6 1, i.e.,
C > 8(∆− 1)
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Application: Vertex Coloring (Bad Bound)

Let G be a graph with degree at most ∆

Experiment. Let Xv be the random variable that represents
the color of the vertex v ∈ V (G ). Let Xv be a color chosen
uniformly (and independently) at random from the set
{1, . . . ,C}
Bad Event. For each vertex v ∈ V (G ), we have a bad event
Bv that is the indicator variable for one of v ’s neighbors
receives the same color as v
Probability of the Bad Event. Note that

P [Bv ] 6 1−
(
1− 1

C

)∆
Dependence. Note that the event Bv does not depend on
any other event Bv ′ is the sets {v} ∪ N(v) and {v ′} ∪ N(v ′)
do not intersect. So, the event Bv depends on at most
∆ + ∆(∆− 1) = ∆2 other bad events
Conclusion. A valid coloring exists if 4pd 6 1, i.e., C >???
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