Lecture 21: Proof of Azuma's Inequality

Recall: Azuma's Inequality

Theorem (Azuma's Inequality)

Let Ω be a sample space and p be a probability distribution over Ω. Let $\{\emptyset, \Omega\}=\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{n}$ be a filtration. Let
$\left(\mathbb{F}_{0}, \mathbb{F}_{1}, \ldots, \mathbb{F}_{n}\right)$ be a martingale with respect to the filtration above. Suppose, for all $1 \leqslant i \leqslant n$, there exists c_{i} such that, for all $x \in \Omega$, we have

$$
c_{i} \geqslant \max _{y \in \mathcal{F}_{i-1}(x)} \mathbb{F}_{i}(y)-\min _{y \in \mathcal{F}_{i-1}(x)} \mathbb{F}_{i}(y)
$$

Then, the following bound holds

$$
\mathbb{P}\left[\mathbb{F}_{n}-\mathbb{F}_{0} \geqslant E\right] \leqslant \exp \left(-2 E^{2} / \sum_{i=1}^{n} c_{i}^{2}\right)
$$

- Let $\left(\Delta \mathbb{F}_{1}, \Delta \mathbb{F}_{2}, \ldots, \Delta \mathbb{F}_{n}\right)$ be the corresponding martingale difference sequence. That is, we define $\Delta \mathbb{F}_{i}=\mathbb{F}_{i}-\mathbb{F}_{i-1}$, for $1 \leqslant i \leqslant n$. Since, this is a martingale difference sequence, we have the following guarantee for all $1 \leqslant i \leqslant n$.

$$
\mathbb{E}\left[\Delta \mathbb{F}_{i} \mid \mathcal{F}_{i-1}\right]=0
$$

- Note that the property of c_{i} can be written as follows (by subtracting $\mathbb{F}_{i-1}(x)$ from both the terms)

$$
c_{i} \geqslant \max _{y \in \mathcal{F}_{i-1}(x)} \Delta \mathbb{F}_{i}(y)-\min _{y \in \mathcal{F}_{i-1}(x)} \Delta \mathbb{F}_{i}(y)
$$

- Azuma's inequality is equivalent to proving

$$
\mathbb{P}\left[\sum_{i=1}^{n} \Delta \mathbb{F}_{i} \geqslant E\right] \leqslant \exp \left(-2 E^{2} / \sum_{i=1}^{n} c_{i}^{2}\right)
$$

- Similar to the technique of proving Chernoff bound, we conclude that, for all $h>0$, the following is true

$$
\mathbb{P}\left[\sum_{i=1}^{n} \Delta \mathbb{F}_{i} \geqslant E\right] \leqslant \frac{\mathbb{E}\left[\exp \left(h \sum_{i=1}^{n} \Delta \mathbb{F}_{i}\right)\right]}{\exp (h E)}
$$

- Our effort now is to upper-bound the expected value

$$
\mathbb{E}\left[\exp \left(h \sum_{i=1}^{n} \Delta \mathbb{F}_{i}\right)\right]
$$

- Consider the following set of manipulations

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(h \sum_{i=1}^{n} \Delta \mathbb{F}_{i}\right)\right] \\
= & \mathbb{E}\left[\mathbb{E}\left[\exp \left(h \sum_{i=1}^{n} \Delta \mathbb{F}_{i}\right) \mid \mathcal{F}_{n-1}\right]\right] \\
= & \mathbb{E}\left[\exp \left(h \sum_{i=1}^{n-1} \Delta \mathbb{F}_{i}\right) \mathbb{E}\left[\exp \left(h \Delta \mathbb{F}_{n}\right) \mid \mathcal{F}_{n-1}\right]\right]
\end{aligned}
$$

The last equality is because $\exp \left(h \sum_{i=1}^{n-1} \Delta \mathbb{F}_{i}\right)$ is \mathcal{F}_{n-1} measurable.

- We can apply Hoeffding's Lemma to upper bound $\mathbb{E}\left[\exp \left(h \Delta \mathbb{F}_{n}\right) \mid \mathcal{F}_{n-1}\right]$ as follows

$$
\mathbb{E}\left[\exp \left(h \Delta \mathbb{F}_{n}\right) \mid \mathcal{F}_{n-1}\right] \leqslant \exp \left(\frac{h^{2}}{8} c_{n}^{2}\right)
$$

- So, we obtain that

$$
\mathbb{E}\left[\exp \left(h \sum_{i=1}^{n} \Delta \mathbb{F}_{i}\right)\right] \leqslant \exp \left(\frac{h^{2}}{8} c_{n}^{2}\right) \mathbb{E}\left[\exp \left(h \sum_{i=1}^{n-1} \Delta \mathbb{F}_{i}\right)\right]
$$

- Repeatedly applying the bound to the last $\Delta \mathbb{F}_{i}$, we get

$$
\mathbb{E}\left[\exp \left(h \sum_{i=1}^{n} \Delta \mathbb{F}_{i}\right)\right] \leqslant \exp \left(\frac{h^{2}}{8} \sum_{i=1}^{n} c_{i}^{2}\right)
$$

- So, we get that

$$
\mathbb{P}\left[\sum_{i=1}^{n} \Delta \mathbb{F}_{i} \geqslant E\right] \leqslant \exp \left(\frac{h^{2}}{8} \sum_{i=1}^{n} c_{i}^{2}-h E\right)
$$

- Rest of the proof is identical to the proof of the Hoeffding's Bound. The optimal choice of h that minimizes the RHS is

$$
h^{*}=4 E / \sum_{i=1}^{n} c_{i}^{2}
$$

- Substituting this value of h, we obtain

$$
\mathbb{P}\left[\sum_{i=1}^{n} \Delta \mathbb{F}_{i} \geqslant E\right] \leqslant \exp \left(-2 E^{2} / \sum_{i=1}^{n} c_{i}^{2}\right)
$$

Concluding Note

- Students are highly recommended to use a representative example (as worked out in the class) to verify all the "equalities" and the "inequalities" used in the derivation of the proof

