Lecture 20: Example Problem Concentration of the Hypergeometric Distribution

Azuma's Inequality

Experiment.

- There are R red balls and B blue balls in an urn at time t = 0
- At any time, we sample a random ball from the urn (and we do not replace the ball back into the urn)
- We are interested in understanding the behavior of the random variable S_n that counts the total number of red balls at the end of time t = n (that is, n balls are sampled without replacement from the urn)
- We assume that R + B ≥ n, i.e., the bin never runs out of balls in our experiment

▲御▶ ▲臣▶ ▲臣▶

Formalization of the Problem I

- The variables $(X_1, ..., X_n)$ represent the balls we sample at time 1, ..., n, respectively
- We are interest in understanding the concentration of the random variable

$$\mathbb{S}_n := \sum_{i=1}^n \mathbf{1}_{\{\mathbb{X}_i = R\}}$$

Note that the probability of $X_i = R$ depends on the sum S_{i-1}

• Let us first calculate the expected value of this random value. Prove by mathematical induction that the following result is true for $n \ge 0$.

Lemma

$$\mathbb{E}\left[\mathbb{S}_n\right] = n \frac{R}{R+B}$$

Azuma's Inequality

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・

э

In this lecture, all results will be mentioned. No proofs shall be provided. Students are encouraged to prove these results on their own.

• Now, we shall prove a concentration bound around this expected value

・ 同 ト ・ ヨ ト ・ ヨ ト

Let

$$\{\emptyset, \Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$$

represent the natural ball-exposure filtration for this problem.

• This statement, in short, states that $\Omega = \{R, B\}^n$ and, for any $x \in \Omega$ and $0 \leq i \leq n$, we have

$$\mathcal{F}_i(x) = \{x_1 x_2 \dots x_i\} \times \{R, B\}^{n-i}$$

That is, $\mathcal{F}_i(x)$ is the set of all $y \in \Omega$ such that $x_1 = y_1, \ldots, x_i = y_i$

▲御▶ ▲ 国▶ ▲ 国▶

The Filtration and the Martingale II

• Now, we need to define the random functions $\mathbb{F}_0, \ldots, \mathbb{F}_n$ that are $\Omega \to \mathbb{R}$.

$$\mathbb{F}_i(x) := \mathbb{E}\left[\mathbb{S}_n | \mathcal{F}_i\right](x)$$

Let us parse this statement. Recall that $\mathcal{F}_i(x)$ denotes the set of all $y \in \Omega$ that agree at the first *i* entries with *x*, i.e., the subset $\{x_1x_2...x_i\} \times \{R, B\}^{n-i}$. Now, $\mathbb{F}_i(x)$ represents the conditional expectation of \mathbb{S}_n restricted to *x* in the subset $\mathcal{F}_i(x)$.

- Observe that F₀ = E [S_n], i.e., the expected value of S_n in this experiment. We have already computed this quantity previously, i.e., we have F₀ = n ^R/_{R+B}.
- Observe that \mathbb{F}_i is \mathcal{F}_i -measurable, for $0 \leq i \leq n$
- Now, we need to prove that the martingale property holds. That is, we need to prove (the functional identity) $\mathbb{E}\left[\mathbb{F}_{i+1}|\mathcal{F}_i\right] = (\mathbb{F}_i|\mathcal{F}_i)$, for all $0 \leq i < n$

・ 同 ト ・ ヨ ト ・ ヨ ト

The Filtration and the Martingale III

Note that (F₀,...,F_n) is Doob's martingale for the function S_n. So, it is a martingale. Nevertheless, let us prove that (F₀,...,F_n) is a martingale with respect to the ball-exposure filtration (F₀,...,F_n) using elementary techniques. Towards this, we need to compute the following quantity

 $(\mathbb{F}_i|\mathcal{F}_i)(x) = ?$

Prove the following result.

Lemma

Let $0 \le i \le n$. Let $\mathbb{S}_i(x)$ represent the number of red balls in the first i samples of $x \in \{R, B\}^n$. Then, we have

$$(\mathbb{F}_i|\mathcal{F}_i)(x) = \mathbb{S}_i(x) + (n-i)\frac{R - \mathbb{S}_i(x)}{R + B - i}$$

▲母▼▲目▼▲目▼ 目 めへぐ

The Filtration and the Martingale IV

Intuitively, we have seen $\mathbb{S}_i(x)$ until time t = i. In the future, we expect to see $(n - i)\frac{R - \mathbb{S}_i(x)}{R + B - i}$ red balls (there are $R - \mathbb{S}_i(x)$ red balls left in the urn among R + B - i balls). At time time t = i + 1, the probability that we see a red ball is $p = \frac{R - \mathbb{S}_i(x)}{R + B - i}$. So, we have

$$\mathbb{E}\left[\mathbb{F}_{i+1}|\mathcal{F}_i\right](x) = p\left(\mathbb{S}_i(x) + 1 + (n-i-1)\frac{R - \mathbb{S}_i(x) - 1}{R + B - i - 1}\right)$$
$$(1-p)\left(\mathbb{S}_i(x) + (n-i-1)\frac{R - \mathbb{S}_i(x)}{R + B - i - 1}\right)$$

We need to prove that the RHS is equal to $\mathbb{S}_i(x) + (n-i)\frac{R-\mathbb{S}_i(x)}{R+B-i}$. This step is left as an exercise. (Think: You have already proved this result earlier!)

▲ (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶ < (□) ▶

The Filtration and the Martingale V

• Let us calculate the value of c_{i+1} , for $0 \leq i < n$.

$$= \max_{y \in \mathcal{F}_{i}(x)} \mathbb{F}_{i+1}(y) - \min_{y \in \mathcal{F}_{i}(x)} \mathbb{F}_{i+1}(y)$$

= $\left(\mathbb{S}_{i}(x) + 1 + (n - i - 1) \frac{R - \mathbb{S}_{i}(x) - 1}{R + B - i - 1} \right)$
- $\left(\mathbb{S}_{i}(x) + (n - i - 1) \frac{R - \mathbb{S}_{i}(x)}{R + B - i - 1} \right)$
= $1 - \frac{n - i - 1}{R + B - i - 1}$
< $1 =: c_{i+1}$

・ロン ・雪 と ・ ヨ と ・ ヨ と

The Filtration and the Martingale VI

• By Azuma's inequality, we have

$$\mathbb{P}\left[\mathbb{F}_n - \mathbb{F}_0 \geqslant E\right] \leqslant \exp\left(-2E^2 / \sum_{i=1}^n c_i^2\right)$$

This inequality is equivalent to

$$\mathbb{P}\left[\mathbb{F}_n - n\frac{R}{R+B} \ge E\right] \le \exp(-2E^2/n)$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶