Lecture 20: Example Problem
 Concentration of the Hypergeometric Distribution

Hypergeometric Series

Experiment.

- There are R red balls and B blue balls in an urn at time $t=0$
- At any time, we sample a random ball from the urn (and we do not replace the ball back into the urn)
- We are interested in understanding the behavior of the random variable \mathbb{S}_{n} that counts the total number of red balls at the end of time $t=n$ (that is, n balls are sampled without replacement from the urn)
- We assume that $R+B \geqslant n$, i.e., the bin never runs out of balls in our experiment

Formalization of the Problem I

- The variables $\left(\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}\right)$ represent the balls we sample at time $1, \ldots, n$, respectively
- We are interest in understanding the concentration of the random variable

$$
\mathbb{S}_{n}:=\sum_{i=1}^{n} \mathbf{1}_{\left\{\mathbb{X}_{i}=R\right\}}
$$

Note that the probability of $\mathbb{X}_{i}=R$ depends on the sum \mathbb{S}_{i-1}

- Let us first calculate the expected value of this random value. Prove by mathematical induction that the following result is true for $n \geqslant 0$.

Lemma

$$
\mathbb{E}\left[\mathbb{S}_{n}\right]=n \frac{R}{R+B}
$$

In this lecture, all results will be mentioned. No proofs shall be provided. Students are encouraged to prove these results on their own.

- Now, we shall prove a concentration bound around this expected value
- Let

$$
\{\emptyset, \Omega\}=\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{n}
$$

represent the natural ball-exposure filtration for this problem.

- This statement, in short, states that $\Omega=\{R, B\}^{n}$ and, for any $x \in \Omega$ and $0 \leqslant i \leqslant n$, we have

$$
\mathcal{F}_{i}(x)=\left\{x_{1} x_{2} \ldots x_{i}\right\} \times\{R, B\}^{n-i}
$$

That is, $\mathcal{F}_{i}(x)$ is the set of all $y \in \Omega$ such that $x_{1}=y_{1}, \ldots$, $x_{i}=y_{i}$

The Filtration and the Martingale II

- Now, we need to define the random functions $\mathbb{F}_{0}, \ldots, \mathbb{F}_{n}$ that are $\Omega \rightarrow \mathbb{R}$.

$$
\mathbb{F}_{i}(x):=\mathbb{E}\left[\mathbb{S}_{n} \mid \mathcal{F}_{i}\right](x)
$$

Let us parse this statement. Recall that $\mathcal{F}_{i}(x)$ denotes the set of all $y \in \Omega$ that agree at the first i entries with x, i.e., the subset $\left\{x_{1} x_{2} \ldots x_{i}\right\} \times\{R, B\}^{n-i}$. Now, $\mathbb{F}_{i}(x)$ represents the conditional expectation of \mathbb{S}_{n} restricted to x in the subset $\mathcal{F}_{i}(x)$.

- Observe that $\mathbb{F}_{0}=\mathbb{E}\left[\mathbb{S}_{n}\right]$, i.e., the expected value of \mathbb{S}_{n} in this experiment. We have already computed this quantity previously, i.e., we have $\mathbb{F}_{0}=n \frac{R}{R+B}$.
- Observe that \mathbb{F}_{i} is \mathcal{F}_{i}-measurable, for $0 \leqslant i \leqslant n$
- Now, we need to prove that the martingale property holds.

That is, we need to prove (the functional identity)
$\mathbb{E}\left[\mathbb{F}_{i+1} \mid \mathcal{F}_{i}\right]=\left(\mathbb{F}_{i} \mid \mathcal{F}_{i}\right)$, for all $0 \leqslant i<n$

The Filtration and the Martingale III

- Note that $\left(\mathbb{F}_{0}, \ldots, \mathbb{F}_{n}\right)$ is Doob's martingale for the function \mathbb{S}_{n}. So, it is a martingale. Nevertheless, let us prove that $\left(\mathbb{F}_{0}, \ldots, \mathbb{F}_{n}\right)$ is a martingale with respect to the ball-exposure filtration $\left(\mathcal{F}_{0}, \ldots, \mathcal{F}_{n}\right)$ using elementary techniques. Towards this, we need to compute the following quantity

$$
\left(\mathbb{F}_{i} \mid \mathcal{F}_{i}\right)(x)=?
$$

Prove the following result.

Lemma

Let $0 \leqslant i \leqslant n$. Let $\mathbb{S}_{i}(x)$ represent the number of red balls in the first i samples of $x \in\{R, B\}^{n}$. Then, we have

$$
\left(\mathbb{F}_{i} \mid \mathcal{F}_{i}\right)(x)=\mathbb{S}_{i}(x)+(n-i) \frac{R-\mathbb{S}_{i}(x)}{R+B-i}
$$

The Filtration and the Martingale IV

Intuitively, we have seen $\mathbb{S}_{i}(x)$ until time $t=i$. In the future, we expect to see $(n-i) \frac{R-\mathbb{S}_{i}(x)}{R+B-i}$ red balls (there are $R-\mathbb{S}_{i}(x)$ red balls left in the urn among $R+B-i$ balls).
At time time $t=i+1$, the probability that we see a red ball is $p=\frac{R-\mathbb{S}_{i}(x)}{R+B-i}$. So, we have
$\mathbb{E}\left[\mathbb{F}_{i+1} \mid \mathcal{F}_{i}\right](x)=p\left(\mathbb{S}_{i}(x)+1+(n-i-1) \frac{R-\mathbb{S}_{i}(x)-1}{R+B-i-1}\right)$

$$
(1-p)\left(\mathbb{S}_{i}(x)+(n-i-1) \frac{R-\mathbb{S}_{i}(x)}{R+B-i-1}\right)
$$

We need to prove that the RHS is equal to $\mathbb{S}_{i}(x)+(n-i) \frac{R-\mathbb{S}_{i}(x)}{R+B-i}$. This step is left as an exercise. (Think: You have already proved this result earlier!)

- Let us calculate the value of c_{i+1}, for $0 \leqslant i<n$.

$$
\begin{aligned}
= & \max _{y \in \mathcal{F}_{i}(x)} \mathbb{F}_{i+1}(y)-\min _{y \in \mathcal{F}_{i}(x)} \mathbb{F}_{i+1}(y) \\
= & \left(\mathbb{S}_{i}(x)+1+(n-i-1) \frac{R-\mathbb{S}_{i}(x)-1}{R+B-i-1}\right) \\
& \quad-\left(\mathbb{S}_{i}(x)+(n-i-1) \frac{R-\mathbb{S}_{i}(x)}{R+B-i-1}\right) \\
= & 1-\frac{n-i-1}{R+B-i-1} \\
< & 1=: c_{i+1}
\end{aligned}
$$

- By Azuma's inequality, we have

$$
\mathbb{P}\left[\mathbb{F}_{n}-\mathbb{F}_{0} \geqslant E\right] \leqslant \exp \left(-2 E^{2} / \sum_{i=1}^{n} c_{i}^{2}\right)
$$

This inequality is equivalent to

$$
\mathbb{P}\left[\mathbb{F}_{n}-n \frac{R}{R+B} \geqslant E\right] \leqslant \exp \left(-2 E^{2} / n\right)
$$

