Lecture 19: Martingale Difference Sequence & Azuma-Hoeffding Inequality

Azuma's Inequality

- Let $\{\emptyset, \Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$ be a filtration
- Let $(\mathbb{F}_0, \mathbb{F}_1, \dots, \mathbb{F}_n)$ be a martingale sequence with respect to the filtration above
- Let $\mathbb{Y}_0 = \mathbb{F}_0$, and $\mathbb{Y}_{t+1} = \mathbb{F}_{t+1} \mathbb{F}_t$, for $0 \leqslant t < n$
- Intuition: \mathbb{Y}_{t+1} measures the increase in \mathbb{Y}_{t+1} from \mathbb{Y}_t . If \mathbb{Y}_{t+1} is negative then it implies that \mathbb{Y}_{t+1} is smaller than \mathbb{Y}_t
- Note that $\mathbb{E}\left[\mathbb{Y}_{t+1}|\mathcal{F}_t\right] = 0$, because we have $\mathbb{E}\left[\mathbb{F}_{t+1}|\mathcal{F}_t\right] = \mathbb{F}_t$

イロト イポト イヨト イヨト 一日

Theorem (Azuma's Inequality)

Suppose $(\mathbb{Y}_0, \ldots, \mathbb{Y}_n)$ be a martingale difference sequence with respect to the filtration $\{\emptyset, \Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$. Assume that the following condition holds for all $x \in \Omega$ and $0 \leq t < n$.

$$\max_{y \in \mathcal{F}(x)} \mathbb{Y}_{t+1}(y) - \min_{y \in \mathcal{F}(x)} \mathbb{Y}_{t+1}(y) \leqslant c_{t+1}$$

Then the following large deviation bound holds

$$\mathbb{P}\left[\sum_{i=1}^{n} \mathbb{Y}_{i} \ge E\right] \leqslant \exp\left(-2E^{2}/\sum_{i=1}^{n}c_{i}^{2}\right)$$

Subtlety. Fix *t*. For different $x \in \Omega$, it is possible that $\max_{y \in \mathcal{F}(x)} \mathbb{Y}_{t+1}(y)$ is different from $\min_{y \in \mathcal{F}(x)} \mathbb{Y}_{t+1}(y)$. All that matters is that their <u>difference</u> is bounded by c_{t+1} .

< A >

- The proof outline is identical to the Hoeffding bound proof.
- If we prove the following bound, then we are done. For any h > 0, we have

$$\mathbb{E}\left[\exp\left(h\sum_{i=1}^{n}\mathbb{Y}_{i}\right)\right] \leqslant \exp\left(\frac{h^{2}}{8}\sum_{i=1}^{n}c_{i}^{2}\right)$$

This form of the inequality should remind us that we should be using the Hoeffding's Lemma in our proof.

(4 同) (4 回) (4 回)

- The distribution \mathbb{Y}_{t+1} can depend on the previous outcomes $(\omega_1, \dots, \omega_t)$
- For different x ∈ Ω, it is possible that max_{y∈F(x)} 𝒱_{t+1}(y) is different from min_{y∈F(x)} 𝒱_{t+1}(y). All that matters is that their difference is bounded by c_{t+1}

▲御▶ ▲注▶ ▲注▶