# Lecture 17&18: Sigma Fields and Martingales



- This is a very informal treatment of the concept of Martingales
- In particular, the intuitions are specific to discrete-time martingales and discrete spaces
- $\bullet$  Interested readers are referred to study  $\sigma\textsc{-algebras}$  for a more formal treatment of this material

伺 と く ヨ と く ヨ と

- We shall introduce the concept of Martingales
- We shall study Discrete-time Martingales over Discrete Spaces
- Specifically, we shall study Doob's martingale
- In the next lecture, we shall study Azuma's inequality

Let  $\Omega$  be a (discrete) sample space with probability distribution p. That is, for any  $x \in \Omega$ , the value p(x) represents the probability associated with the element x.

#### Definition

A  $\sigma$ -field  $\mathcal{F}$  on  $\Omega$  is a collection of subsets of  $\Omega$  such that the following constraints are satisfied.

- ${\small \bullet} \ \ \, {\cal F} \ \ {\rm contains} \ \ \, \emptyset \ \ {\rm and} \ \ \, \Omega, \ \ {\rm and} \ \ \,$
- 2  $\mathcal{F}$  is closed under union, intersection, and complementation.

# Example $\sigma$ -Fields

- $\mathcal{F}_0 = \{\emptyset, \Omega\}$  is a  $\sigma$ -field
- Suppose  $\Omega = \{0, 1\}^n$
- Let  $\mathcal{F}_1 = \mathcal{F}_0 \cup \left\{ \{0\} \times \{0,1\}^{n-1}, \{1\} \times \{0,1\}^{n-1} \right\}$ . Note that  $\mathcal{F}_1$  is also a  $\sigma$ -field. In general, we can write  $\mathcal{F}_1$  as the following set

$$\left\{S \times \{0,1\}^{n-1} \colon S \subseteq \{0,1\}\right\}$$

We are using the convention that is  $S = \emptyset$ , then  $S \times \{0,1\}^{n-1} = \emptyset$ .

- Let  $\mathcal{F}_2 = \left\{ S \times \{0,1\}^{n-2} \colon S \subseteq \{0,1\}^2 \right\}$ . Note that  $\mathcal{F}_2$  has 16 elements, and  $\mathcal{F}_1 \subset \mathcal{F}_2$ . It is easy to verify that  $\mathcal{F}_2$  is a  $\sigma$ -field.
- In general, consider the following  $\sigma$ -field, for  $0 \leq k \leq n$ .

$$\mathcal{F}_k = \left\{ S imes \{0,1\}^{n-k} \colon S \subseteq \{0,1\}^k 
ight\}$$

Martingales

- Let  $x \in \Omega$
- Consider a  $\sigma$ -field  ${\mathcal F}$  on  $\Omega$
- The smallest set in  $\mathcal{F}$  containing x, represented by  $\mathcal{F}(x)$ , is the intersection of all sets in  $\mathcal{F}$  that contain x. Formally, it is the following set

$$\mathcal{F}(x) := \bigcap_{S \in \mathcal{F} : x \in S} S$$

 For example, let n = 5, x = 01001, and consider the σ-field *F*<sub>2</sub> on Ω. In this case, the smallest set *F*<sub>2</sub>(x) in *F*<sub>2</sub> that contains x is {01} × {0,1}<sup>n-2</sup>.

# $\mathcal{F}$ -Measurable

• Let  $f: \Omega \to \mathbb{R}$  be an arbitrary function

#### Definition (*F*-Measurable)

The function f is  $\mathcal{F}$ -measurable if, for all  $x \in \Omega$  and  $y \in \mathcal{F}(x)$ , we have f(x) = f(y), where  $\mathcal{F}(x)$  represents the smallest subset in  $\mathcal{F}$  containing x

- Intuitively, the function f is constant over all the elements of  $\mathcal{F}_2(x)$ , for any  $x \in \Omega$
- For example, let n = 5 and consider the  $\sigma$ -field  $\mathcal{F}_2$  on  $\Omega$
- As we have seen, we have \$\mathcal{F}\_2(x) = {x\_1x\_2} \times {0,1}^{n-2}\$, where \$x\_1\$ and \$x\_2\$ are, respectively, the first and the second bits of \$x\$. That is, \$\mathcal{F}\_2(x)\$ is the set of all \$n\$-bit strings that begin with \$x\_1x\_2\$.
- Let f(x) be the total number of 1s in the first two coordinates of x. This function is  $\mathcal{F}_2$ -measurable
- Let f(x) be the expected number of 1s over all strings whose first two bits are  $x_1x_2$ . This function is also  $\mathcal{F}_2$ -measurable
- Let f(x) be the total number of 1s in the first three bits of x. This function is not  $\mathcal{F}_2$ -measurable, because x = 00000 and y = 00100 satisfy  $y \in \mathcal{F}_2(x)$  but  $f(x) \neq f(y)$

# Conditional Expectation

- Let p be a probability distribution over the sample space  $\Omega$
- Let  $\mathcal{F}$  be a  $\sigma$ -field on  $\Omega$
- Let  $f: \Omega \to \mathbb{R}$  be an arbitrary function
- We define the conditional expectation as a function  $\mathbb{E}\left[f|\mathcal{F}\right]: \Omega \to \mathbb{R}$  defined as follows

$$\mathbb{E}\left[f|\mathcal{F}\right](x) := \frac{1}{\sum_{y \in \mathcal{F}(x)} p(y)} \sum_{y \in \mathcal{F}(x)} f(y) \cdot p(y)$$

- We emphasize that the function *f* need not be *F*-measurable to define the expectation in this manner!
- Note that  $\mathbb{E}[f|\mathcal{F}](x) = \mathbb{E}[f|\mathcal{F}](y)$ , for all  $y \in \mathcal{F}(x)$ . That is, the function  $\mathbb{E}[f|\mathcal{F}]$  is  $\mathcal{F}$ -measurable!

(日本) (日本) (日本)

### Let $\Omega$ be a sample space with probability distribution p

Definition (Filtration)

A sequence of  $\sigma$ -fields  $\mathcal{F}_0, \mathcal{F}_1, \dots, \mathcal{F}_n$  on  $\Omega$  is a filtration if

$$\{\emptyset,\Omega\}=\mathcal{F}_0\subset\mathcal{F}_1\subset\cdots\subset\mathcal{F}_n$$

Note that when  $\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$ , then the  $\sigma$ -fields  $\mathcal{F}_i$  on  $\Omega$  defined below forms a filtration.

$$\mathcal{F}_i = \{S \times \Omega_{i+1} \times \cdots \times \Omega_n \colon S \subseteq \Omega_1 \times \cdots \times \Omega_i\}$$

イロト イヨト イヨト

# Beginning of "Intuition Slides"

Martingales

- As time progresses, new information about the sample is revealed to us
- At time 1, we learn the value of  $\omega_1$  of the random variable  $\mathbb{X}_1$
- At time 2, we learn the value of  $\omega_2$  of the random variable  $\mathbb{X}_2$
- As so on. At time t, we learn the value of  $\omega_t$  of the random variable  $\mathbb{X}_t$
- By the end of time *n*, we know the value  $\omega_n$  of the last random variable  $\mathbb{X}_n$
- At this point,  $f(X_1, \ldots, X_n)$  can be calculated, where  $f: \Omega \to \mathbb{R}$  is a function that we are interested in

・ 同 ト ・ ヨ ト ・ ヨ ト

- Balls and Bins. At time i we find out the bin  $\omega_i$  where the ball i lands
- Coin tosses. At time *i* we find out the outcome  $\omega_i$  of the *i*-th coin toss
- Hypergeometric Series. At time *i* we find out the color ω<sub>i</sub> of the *i*-th ball drawn from the jar (where sampling is being carried out without replacement)
- Bounded Difference Function. At time *i* we find out the outcome ω<sub>i</sub> of the *i*-th variable of the input of the function *f*.

- 4 目 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H

- In a filtration, the σ-field F<sub>k</sub> represents the knowledge we have after knowing the outcomes (ω<sub>1</sub>,..., ω<sub>k</sub>)
- For instance, the  $\sigma\text{-field}\ \mathcal{F}_0$  on  $\Omega$  represents "we know nothing about the sample"
- For instance, the  $\sigma$ -field  $\mathcal{F}_n$  on  $\Omega$  represents "we know everything about the sample"
- In general, the  $\sigma$ -field  $\mathcal{F}_k$  on  $\Omega$  represents "we know the first k coordinates of the sample"

- Think of a rooted tree
- For every internal node, the outgoing edges represent the various possible outcomes in the next time step
- Leaves represent that the entire sample is already known
- The sequence of outcomes (ω<sub>1</sub>,..., ω<sub>n</sub>) represents a "root-to-leaf" path
- Consider a filtration {Ø, Ω} = F<sub>0</sub> ⊂ F<sub>1</sub> ⊂ · · · ⊂ F<sub>n</sub>. The set F<sub>k</sub>(x) corresponding to this root-to-leaf path is the depth-k node on this path

・ 同 ト ・ ヨ ト ・ ヨ ト

- Consider a filtration  $\{\emptyset, \Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$
- A function f being \$\mathcal{F}\_k\$-measurable implies that f is constant over all leaves of the subtree rooted at \$\mathcal{F}\_k(x)\$
- A random variable F<sub>k</sub> = f(X<sub>1</sub>,..., X<sub>n</sub>) will be F<sub>k</sub>-measurable if the value of f(X<sub>1</sub>,..., X<sub>n</sub>) depends only on X<sub>1</sub> = ω<sub>1</sub>,..., X<sub>k</sub> = ω<sub>k</sub>

イロト イヨト イヨト

# End of "Intuition Slides"

Martingales

御下 ・ ヨト ・ ヨト

-

### Definition (Martingale Sequence)

Let  $\{\emptyset, \Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$  be a filtration. The sequence  $(\mathbb{F}_0, \mathbb{F}_1, \dots, \mathbb{F}_n)$  forms a martingale with respect to the filtration if

**1**  $\mathbb{F}_t$  is  $\mathcal{F}_t$ -measurable, for  $0 \leq t \leq n$ , and

 $\mathbb{E} \left[ \mathbb{F}_{t+1} \mid |\mathcal{F}_t \right] = (\mathbb{F}_t | \mathcal{F}_t), \text{ for all } 0 \leq t < n.$ 

- Note that given  $\mathcal{F}_t = (\omega_1, \omega_2, \dots, \omega_t)$ , the value of  $\mathbb{F}_t$  is fixed. So, we can write  $\mathbb{E}\left[\mathbb{F}_t | \mathcal{F}_t\right](x)$  in short as  $(\mathbb{F}_t | \mathcal{F}_t)(x)$
- Note that given  $\mathcal{F}_t = (\omega_1, \omega_2, \dots, \omega_t)$ , the outcome of  $\mathbb{F}_{t+1}$  is not yet fixed and is (possibly) random
- The second equation in the definition is an "equality of two functions." It means that E [F<sub>t+1</sub>|F<sub>t</sub>] (x) is equal to (F<sub>t</sub>|F<sub>t</sub>) for all x ∈ Ω

# Example

- Consider tossing a coin that gives heads with probability p, and tails with probability (1 p), independently n times
- $\mathcal{F}_t$  is the outcome of the first t coin-tosses
- Let  $\mathbb{S}_t$  represent the number of heads in the first t coin tosses
- Note that  $\mathbb{S}_t(x)$  is fixed given  $\mathcal{F}_t(x)$ , where  $x \in \Omega$
- Note that \$(S\_{t+1}|\mathcal{F}\_t)(y) = (S\_t|\mathcal{F}\_t)(y) + 1\$ with probability \$p\$ (for a random \$y\$ that is consistent with \$\mathcal{F}\_t(x)\$), else \$(S\_{t+1}|\mathcal{F}\_t)(y) = (S\_t|\mathcal{F}\_t)(y)\$
- Therefore,  $\mathbb{E}\left[\mathbb{S}_{t+1}|\mathcal{F}_t\right] = (\mathbb{S}_t|\mathcal{F}_t)(x) + p$
- So, the sequence (S<sub>0</sub>, S<sub>1</sub>,..., S<sub>n</sub>) is not a martingale sequence with respect to the filtration {Ø, Ω} = F<sub>0</sub> ⊂ F<sub>1</sub> ⊂ ··· ⊂ F<sub>n</sub>

(ロ) (部) (E) (E) (E)

# Example

- Let f be a function and we consider a filtration  $\{\emptyset, \Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$
- Let  $\mathbb{F}_t$  be the following random variable

$$\mathbb{F}_t = \mathbb{E}\left[f(\omega_1,\ldots,\omega_t,\mathbb{X}_{t+1},\ldots,\mathbb{X}_n)\right],$$

where  $\omega_1, \ldots, \omega_t$  are the first *t* outcomes of  $x \in \Omega$ 

- First, prove that  $\mathbb{F}_t$  is  $\mathcal{F}_t$  measurable
- Finally, prove that (𝔽<sub>0</sub>,...,𝔽<sub>n</sub>) is a martingale with respect to the filtration {∅, Ω} = 𝓕<sub>0</sub> ⊂ 𝓕<sub>1</sub> ⊂ · · · ⊂ 𝓕<sub>n</sub>