Lecture 16: Talagrand Inequality Application

Longest Increasing Subsequence I

- Suppose $\mathbb{X}=\left(\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}\right)$, where each \mathbb{X}_{i} is independent and uniformly distributed over $\Omega_{i}=[0,1)$
- We are interested in demonstrating a concentration bound for $f(\mathbb{X})$, where $f(\mathbb{X})$ is the longest increasing subsequence in $\left(\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}\right)$
- Observation. Consider any $x \in \Omega:=\Omega_{1} \times \cdots \times \Omega_{n}$. If $f(x)=k$ (i.e., the longest increased subsequence in x is k), then there is a set $K_{x}=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, n\}$ such that K_{x} denotes the indices of the longest increasing subsequence in x
- Observation. Consider any $y \in \Omega$. Note that if y agrees with x at all the indices in K_{x}, then we have $f(y) \geqslant f(x)$ (it is possible that y has a longest increasing subsequence, but, definitely, it will not be shorter than the length of the longest increasing subsequence in x)

Longest Increasing Subsequence II

- Observation. Let us generalize the previous observation further. Consider any $y \in \Omega$. Note that if y agrees with x at all indices in K_{x} except at ℓ indices. Then, we have $f(y) \geqslant f(x)-\ell$. Formally, we can write this as follows

$$
f(y) \geqslant f(x)-\mid\left\{i: i \in K_{x} \text { and } x_{i} \neq y_{i}\right\} \mid
$$

- Intuitively, we incur a penalty for every $i \in K_{x}$ where x and y differ. Let us fix $\alpha_{x}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ such that

$$
\alpha_{i}= \begin{cases}0 & i \notin K_{x} \\ \frac{1}{\sqrt{\left|K_{x}\right|}} & i \in K_{x}\end{cases}
$$

Note that $\left|K_{x}\right|=f(x)$. So, we conclude that

$$
f(y) \geqslant f(x)-\sqrt{f(x)} d_{\alpha_{x}}(x, y)
$$

Longest Increasing Subsequence III

- Rearranging, we get that

$$
d_{\alpha_{x}}(x, y) \geqslant \frac{f(x)-f(y)}{\sqrt{f(x)}}
$$

- Since, $d_{T}(\cdot, \cdot)$ is a supremum of $d_{\alpha}(\cdot, \cdot)$ over all α with norm-1, we get that

$$
d_{T}(x, y) \geqslant \frac{f(x)-f(y)}{\sqrt{f(x)}}
$$

- Define $A_{a}=\{y: y \in \Omega$ and $f(y) \leqslant a\}$. So, for all $y \in A_{a}$, we have $f(y) \leqslant a$. Therefore, for any $y \in A_{a}$, we get

$$
d_{T}(x, y) \geqslant \frac{f(x)-a}{\sqrt{f(x)}}
$$

Longest Increasing Subsequence IV

- Since, the inequality holds for all $y \in A_{a}$, we conclude that

$$
d_{T}\left(x, A_{a}\right) \geqslant \frac{f(x)-a}{\sqrt{f(x)}}
$$

- Observation. If $f(x) \geqslant a+E$, then

$$
d_{A}\left(x, A_{a}\right) \geqslant \frac{E}{\sqrt{a+E}}
$$

- So, we conclude that

$$
\mathbb{P}[f(\mathbb{X}) \geqslant a+E] \leqslant \mathbb{P}\left[d_{T}\left(\mathbb{X}, A_{a}\right) \geqslant \frac{E}{\sqrt{a+E}}\right]
$$

Longest Increasing Subsequence V

- Multiplying both sides by $\mathbb{P}\left[\mathbb{X} \in A_{a}\right]$, we get

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{X} \in A_{a}\right] \cdot \mathbb{P}[f(\mathbb{X}) \geqslant a+E] & \leqslant \mathbb{P}\left[\mathbb{X} \in A_{a}\right] \cdot \mathbb{P}\left[d_{T}\left(\mathbb{X}, A_{a}\right) \geqslant \frac{E}{\sqrt{a+E}}\right] \\
& \leqslant \exp \left(-\frac{E^{2}}{4(a+E)}\right)
\end{aligned}
$$

The last inequality is due to Talagrand inequality.

- Let m be the median of the random variable $f(\mathbb{X})$
- Suppose we set $a=m$. Then, we have $\mathbb{P}\left[\mathbb{X} \in A_{a}\right] \geqslant 1 / 2$. Therefore, we conclude that

$$
\mathbb{P}[f(\mathbb{X}) \geqslant m+E] \leqslant 2 \exp \left(-\frac{E^{2}}{4(m+E)}\right)
$$

This concentration inequality implies a concentration radius of $E=\sqrt{n}$

Longest Increasing Subsequence VI

- Suppose we set $a+E=m$. Then, we have $\mathbb{P}\left[f(\mathbb{X}) \geqslant a_{E}\right] \geqslant 1 / 2$. s Then, we conclude

$$
\mathbb{P}\left[\mathbb{X} \in A_{a}\right]=\mathbb{P}[f(\mathbb{X}) \leqslant m-E] \leqslant 2 \exp \left(-\frac{E^{2}}{4 m}\right)
$$

Again, the radius of concentration is \sqrt{m}.

Configuration Function

- The approach of applying the Talagrand inequality to the problem of longest increasing subsequence can be generalized to several problems
- Consider the definition of c-configuration functions

Definition (Configuration Functions)

A function f is a c-configuration function, if for every x, y, there exists $\alpha_{x, y}$ such that the following holds

$$
f(y) \geqslant f(x)-\sqrt{c \cdot f(x)} d_{\alpha_{x, y}}(x, y)
$$

- Note that the longest increasing subsequence defines $f(\cdot)$ that is 1 -configuration function. The derivation used above can be identically used for c-configuration functions

