Lecture 16: Talagrand Inequality Application

Talagrand Inequality

母を入りて

Longest Increasing Subsequence I

- Suppose X = (X₁,..., X_n), where each X_i is independent and uniformly distributed over Ω_i = [0, 1)
- We are interested in demonstrating a concentration bound for $f(\mathbb{X})$, where $f(\mathbb{X})$ is the longest increasing subsequence in $(\mathbb{X}_1, \ldots, \mathbb{X}_n)$
- Observation. Consider any x ∈ Ω := Ω₁ ×···× Ω_n. If f(x) = k (i.e., the longest increased subsequence in x is k), then there is a set K_x = {i₁,..., i_k} ⊆ {1,..., n} such that K_x denotes the indices of the longest increasing subsequence in x
- Observation. Consider any y ∈ Ω. Note that if y agrees with x at all the indices in K_x, then we have f(y) ≥ f(x) (it is possible that y has a longest increasing subsequence, but, definitely, it will not be shorter than the length of the longest increasing subsequence in x)

Longest Increasing Subsequence II

 Observation. Let us generalize the previous observation further. Consider any y ∈ Ω. Note that if y agrees with x at all indices in K_x except at ℓ indices. Then, we have f(y) ≥ f(x) - ℓ. Formally, we can write this as follows

$$f(y) \ge f(x) - |\{i \colon i \in K_x \text{ and } x_i \neq y_i\}|$$

Intuitively, we incur a penalty for every *i* ∈ K_x where x and y differ. Let us fix α_x = (α₁,..., α_n) such that

$$\alpha_i = \begin{cases} 0 & i \notin K_x \\ \frac{1}{\sqrt{|K_x|}} & i \in K_x \end{cases}$$

Note that $|K_x| = f(x)$. So, we conclude that

$$f(y) \ge f(x) - \sqrt{f(x)}d_{\alpha_x}(x,y)$$

Talagrand Inequality

- (目) (日) (日) (日) (日)

Longest Increasing Subsequence III

Rearranging, we get that

$$d_{lpha_{x}}(x,y) \geqslant rac{f(x)-f(y)}{\sqrt{f(x)}}$$

 Since, d_T(·, ·) is a supremum of d_α(·, ·) over all α with norm-1, we get that

$$d_T(x,y) \ge \frac{f(x) - f(y)}{\sqrt{f(x)}}$$

Define A_a = {y: y ∈ Ω and f(y) ≤ a}. So, for all y ∈ A_a, we have f(y) ≤ a. Therefore, for any y ∈ A_a, we get

$$d_T(x,y) \ge \frac{f(x)-a}{\sqrt{f(x)}}$$

Talagrand Inequality

< ロ > < 同 > < 回 > < 回 > < □ > <

Longest Increasing Subsequence IV

• Since, the inequality holds for all $y \in A_a$, we conclude that

$$d_T(x, A_a) \geqslant \frac{f(x) - a}{\sqrt{f(x)}}$$

• Observation. If $f(x) \ge a + E$, then

$$d_A(x, A_a) \geqslant rac{E}{\sqrt{a+E}}$$

So, we conclude that

$$\mathbb{P}\left[f(\mathbb{X}) \geqslant a + E\right] \leqslant \mathbb{P}\left[d_T(\mathbb{X}, A_a) \geqslant \frac{E}{\sqrt{a + E}}\right]$$

Longest Increasing Subsequence V

• Multiplying both sides by $\mathbb{P}\left[\mathbb{X} \in A_{a}\right]$, we get

$$\mathbb{P}\left[\mathbb{X} \in A_{a}\right] \cdot \mathbb{P}\left[f(\mathbb{X}) \ge a + E\right] \leqslant \mathbb{P}\left[\mathbb{X} \in A_{a}\right] \cdot \mathbb{P}\left[d_{T}(\mathbb{X}, A_{a}) \ge \frac{E}{\sqrt{a + E}}\right]$$
$$\leqslant \exp\left(-\frac{E^{2}}{4(a + E)}\right)$$

The last inequality is due to Talagrand inequality.

- Let *m* be the median of the random variable f(X)
- Suppose we set a = m. Then, we have P [X ∈ A_a] ≥ 1/2. Therefore, we conclude that

$$\mathbb{P}\left[f(\mathbb{X}) \ge m+E\right] \le 2 \exp\left(-\frac{E^2}{4(m+E)}\right)$$

This concentration inequality implies a concentration radius of $E = \sqrt{n}$

Talagrand Inequality

・ 同 ト ・ ヨ ト ・ ヨ ト

• Suppose we set a + E = m. Then, we have $\mathbb{P}\left[f(\mathbb{X}) \ge a_E\right] \ge 1/2$. s Then, we conclude

$$\mathbb{P}\left[\mathbb{X} \in A_{a}\right] = \mathbb{P}\left[f(\mathbb{X}) \leqslant m - E\right] \leqslant 2 \exp\left(-\frac{E^{2}}{4m}\right)$$

Again, the radius of concentration is \sqrt{m} .

▲御▶ ▲臣▶ ▲臣▶

Configuration Function

- The approach of applying the Talagrand inequality to the problem of longest increasing subsequence can be generalized to several problems
- Consider the definition of *c*-configuration functions

Definition (Configuration Functions)

A function f is a c-configuration function, if for every x, y, there exists $\alpha_{x,y}$ such that the following holds

$$f(y) \ge f(x) - \sqrt{c \cdot f(x)} d_{\alpha_{x,y}}(x,y)$$

 Note that the longest increasing subsequence defines f(·) that is 1-configuration function. The derivation used above can be identically used for c-configuration functions

▲御▶ ▲理▶ ▲理≯