
Lecture 11: Chernoff Bound: Easy to Use Forms

Concentration Bounds



Recall

Recall that 1 6 Xi 6 1 are independent random variables, for
1 6 i 6 n. Let pi = E [Xi ], for 1 6 i 6 n. Define
Sn,p := X1 + X2 +· · ·+ Xn, where p := (p1 +· · ·+ pn)/n.
Chernoff bound states that

P
[
Sn,p > n(p + ε)

]
6 exp(−nDKL (p + ε, p))

Objective of this lecture. We shall obtain easier to compute,
albeit weaker, upper bounds on the probability
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First Form I

We shall prove the following bound

Theorem

P
[
Sn,p > n(p + ε)

]
6 exp(−nDKL (p + ε, p)) 6 exp(−2nε2)

Comment: The upper-bound is easy to compute. However,
this bound does not depend on p at all.

To prove this result, it suffices to prove that

DKL (p + ε, p) > 2ε2

Concentration Bounds



First Form II

We shall use the Lagrange form of the Taylor approximation
theorem to the following function

f (ε) = DKL (p + ε, p) = (p+ε) log
p + ε

p
+(1−p−ε) log 1− p − ε

1− p

Observe that f (0) = 0

Differentiating once, we have

f ′(ε) = log
p + ε

p
− log

1− p − ε
1− p

Observe that f ′(0) = 0

Differentiating twice, we have

f ′′(ε) =
1

p + ε
+

1
1− p − ε

=
1

(p + ε)(1− p − ε)
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First Form III
By applying the Lagrange form of the Taylor’s remainder
theorem, we get the following result. For every ε, there exists
θ ∈ [0, 1] such that

f (ε) = f (0) + f ′(0) · ε+ f ′′(θε) · ε
2

2
= f ′′(θε) · ε

2

2

Note that f (θε) = 1
(p+θε)(1−p−θε) . We can apply the AM-GM

inequality to conclude that

(p + θε)(1− p − θε) 6
(
(p + θε) + (1− p − θε)

2

)2

=
1
4

Therefore, we get that f (θε) > 4. Substituting this bound, we
get

f (ε) = f ′′(θε) · (ε2/2) > 4 · (ε2/2) = 2ε2

This completes the proof.

Concentration Bounds



Second Form I

In the previous bound, we consider the probability of Sn,p
exceeding the expected value np by an additive amount nε.
Now, we want to explore the case when the offset is
multiplicative. That is, we want to consider the probability of
Sn,p exceeding the expected value np by a multiplicative
amount λ(np). We shall prove the following result

Theorem
For λ > 0, we have

P
[
Sn,p > np(1+ λ)

]
6 exp(−nDKL

(
p(1+ λ), p

)
)

6 exp

(
− λ2

2(1+ λ/3)
np

)

Comment: Note that this bound depends on p.
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Second Form II

Let us expand and write the expression
exp(−nDKL

(
p(1+ λ), p

)
) below((

1
1+ λ

)p(1+λ)( 1− p

1− p(1+ λ)

)1−p(1+λ)
)n

=

((
1

1+ λ

)p(1+λ)(
1+

λp

1− p(1+ λ)

)1−p(1+λ)
)n

6

((
1

1+ λ

)p(1+λ)

exp(λp)

)n

=

((
1

1+ λ

)(1+λ)

exp(λ)

)np

The last inequality is from the fact that 1+ x 6 exp(x) for all
x > 0.
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Second Form III

So, to prove the theorem, it suffices to prove that(
1

1+ λ

)(1+λ)

exp(λ) 6 exp

(
− λ2

2(1+ λ/3)

)

Equivalently, (by taking log both sides) it suffices to prove that

λ2

2(1+ λ/3)
6 (1+ λ) log(1+ λ)− λ

That is, we need to prove that the following function is
positive for positive λ

f (λ) := (1+ λ) log(1+ λ)− λ− λ2

2(1+ λ/3)

Proving this result is left as an exercise!
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Third Form I

We have always been looking at the probability that the sum
Sn,p significantly exceeds the expected value of the sum. We
shall now consider the probability that the sum is Sn,p is
significantly lower than the expected value of the sum.

We can apply the Chernoff bound of the r.v. 1− Xi and get
the following result

P
[
Sn,p 6 n(p − ε)

]
= P

[
n − Sn,p > n(1− p + ε)

]
6 exp(−nDKL (1− p + ε, 1− p))

By using the first form of our bounds that we studied today,
we can conclude that

P
[
Sn,p 6 n(p − ε)

]
6 exp(−nDKL (1− p + ε, 1− p)) 6 exp(−2nε2)
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Third Form II

We are, however, interested in obtaining a bound where the
deviation is multiplicative. That is,

P
[
Sn,p 6 np(1− λ)

]
6??

where 1 > λ > 0.

We shall prove the following bound

Theorem
For 1 > λ > 0, we have

P
[
Sn,p 6 np(1− λ)

]
6 exp(−nDKL

(
1− p(1− λ), 1− p

)
)

6 exp(−λ2np/2)
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Third Form III

We shall proceed just like the proof of the “second form.” It
suffices to prove that

DKL
(
1− p(1− λ), 1− p

)
> λ2p/2

Let us expand and write DKL
(
1− p(1− λ), 1− p

)
as follows

(1− p(1− λ)) log 1− p(1− λ)
1− p

+ p(1− λ) log(1− λ)
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Third Form IV

Note that

(1− p(1− λ)) log 1− p(1− λ)
1− p

=− (1− p(1− λ)) log 1− p

1− p(1− λ)

=− (1− p(1− λ)) log
(
1− λp

1− p(1− λ)

)
>− (1− p(1− λ)) ·

(
− λp

1− p(1− λ)

)
= λp

The last inequality is from the fact that 1− x 6 exp(−x) for
all x > 0. (Comment: Since there is a negative sign in front,
the inequality is in the opposite direction when substituted)
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Third Form V

Substituting this result, we get that

DKL
(
1− p(1− λ), 1− p

)
> λp + p(1− λ) log(1− λ)

So, it suffices to prove that

λp + p(1− λ) log(1− λ) > λ2p/2

Or, equivalently, we need to prove that

λ+ (1− λ) log(1− λ) > λ2/2
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Third Form VI

This proof is done using the following observations using the
Taylor expansion of log(1− λ)

log(1− λ) =
∑
i>1

−λ
i

i

(1− λ) log(1− λ) = −λ+
∑
i>2

(
1

i − 1
− 1

i

)
λi

= −λ+
∑
i>2

1
i(i − 1)

λi

λ+ (1− λ) log(1− λ) =
∑
i>2

1
i(i − 1)

λi

> λ2/2

Concentration Bounds



Conclusion

To conclude, let us summarize the results that we derived today.

Theorem
The random variables X1, . . . ,Xn are independent and 0 6 Xi 6 1.
Let Sn,p := X1 +· · ·+ Xn. Furthermore, we define
p := (E [X1] +· · ·+ E [Xn])/n. Then, the following results hold

1 For ε > 0, we have

P
[
Sn,p > n(p + ε)

]
6 exp(−2nε2), and

P
[
Sn,p 6 n(p − ε)

]
6 exp(−2nε2)

2 For λ > 0, we have

P
[
Sn,p > np(1+ λ)

]
6 exp(−λ2np/2(1+ λ/3))

3 For 1 > λ > 0, we have

P
[
Sn,p 6 np(1− λ)

]
6 exp(−λ2np/2)
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