Lecture 11: Chernoff Bound: Easy to Use Forms

- Recall that $1 \leqslant \mathbb{X}_{i} \leqslant 1$ are independent random variables, for $1 \leqslant i \leqslant n$. Let $p_{i}=\mathbb{E}\left[\mathbb{X}_{i}\right]$, for $1 \leqslant i \leqslant n$. Define $\mathbb{S}_{n, p}:=\mathbb{X}_{1}+\mathbb{X}_{2}+\cdots+\mathbb{X}_{n}$, where $p:=\left(p_{1}+\cdots+p_{n}\right) / n$.
- Chernoff bound states that

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right] \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)\right)
$$

- Objective of this lecture. We shall obtain easier to compute, albeit weaker, upper bounds on the probability
- We shall prove the following bound

Theorem

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right] \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)\right) \leqslant \exp \left(-2 n \varepsilon^{2}\right)
$$

- Comment: The upper-bound is easy to compute. However, this bound does not depend on p at all.
- To prove this result, it suffices to prove that

$$
\mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p) \geqslant 2 \varepsilon^{2}
$$

- We shall use the Lagrange form of the Taylor approximation theorem to the following function

$$
f(\varepsilon)=\mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)=(p+\varepsilon) \log \frac{p+\varepsilon}{p}+(1-p-\varepsilon) \log \frac{1-p-\varepsilon}{1-p}
$$

Observe that $f(0)=0$

- Differentiating once, we have

$$
f^{\prime}(\varepsilon)=\log \frac{p+\varepsilon}{p}-\log \frac{1-p-\varepsilon}{1-p}
$$

Observe that $f^{\prime}(0)=0$

- Differentiating twice, we have

$$
f^{\prime \prime}(\varepsilon)=\frac{1}{p+\varepsilon}+\frac{1}{1-p-\varepsilon}=\frac{1}{(p+\varepsilon)(1-p-\varepsilon)}
$$

- By applying the Lagrange form of the Taylor's remainder theorem, we get the following result. For every ε, there exists $\theta \in[0,1]$ such that

$$
f(\varepsilon)=f(0)+f^{\prime}(0) \cdot \varepsilon+f^{\prime \prime}(\theta \varepsilon) \cdot \frac{\varepsilon^{2}}{2}=f^{\prime \prime}(\theta \varepsilon) \cdot \frac{\varepsilon^{2}}{2}
$$

Note that $f(\theta \varepsilon)=\frac{1}{(p+\theta \varepsilon)(1-p-\theta \varepsilon)}$. We can apply the AM-GM inequality to conclude that

$$
(p+\theta \varepsilon)(1-p-\theta \varepsilon) \leqslant\left(\frac{(p+\theta \varepsilon)+(1-p-\theta \varepsilon)}{2}\right)^{2}=\frac{1}{4}
$$

Therefore, we get that $f(\theta \varepsilon) \geqslant 4$. Substituting this bound, we get

$$
f(\varepsilon)=f^{\prime \prime}(\theta \varepsilon) \cdot\left(\varepsilon^{2} / 2\right) \geqslant 4 \cdot\left(\varepsilon^{2} / 2\right)=2 \varepsilon^{2}
$$

This completes the proof.

- In the previous bound, we consider the probability of $\mathbb{S}_{n, p}$ exceeding the expected value $n p$ by an additive amount $n \varepsilon$. Now, we want to explore the case when the offset is multiplicative. That is, we want to consider the probability of $\mathbb{S}_{n, p}$ exceeding the expected value $n p$ by a multiplicative amount $\lambda(n p)$. We shall prove the following result

Theorem

For $\lambda>0$, we have

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n p(1+\lambda)\right] & \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(p(1+\lambda), p)\right) \\
& \leqslant \exp \left(-\frac{\lambda^{2}}{2(1+\lambda / 3)} n p\right)
\end{aligned}
$$

- Comment: Note that this bound depends on p.
- Let us expand and write the expression $\exp \left(-n \mathrm{D}_{\mathrm{KL}}(p(1+\lambda), p)\right)$ below

$$
\begin{aligned}
& \left(\left(\frac{1}{1+\lambda}\right)^{p(1+\lambda)}\left(\frac{1-p}{1-p(1+\lambda)}\right)^{1-p(1+\lambda)}\right)^{n} \\
= & \left(\left(\frac{1}{1+\lambda}\right)^{p(1+\lambda)}\left(1+\frac{\lambda p}{1-p(1+\lambda)}\right)^{1-p(1+\lambda)}\right)^{n} \\
\leqslant & \left(\left(\frac{1}{1+\lambda}\right)^{p(1+\lambda)} \exp (\lambda p)\right)^{n}=\left(\left(\frac{1}{1+\lambda}\right)^{(1+\lambda)} \exp (\lambda)\right)^{n p}
\end{aligned}
$$

The last inequality is from the fact that $1+x \leqslant \exp (x)$ for all $x \geqslant 0$.

- So, to prove the theorem, it suffices to prove that

$$
\left(\frac{1}{1+\lambda}\right)^{(1+\lambda)} \exp (\lambda) \leqslant \exp \left(-\frac{\lambda^{2}}{2(1+\lambda / 3)}\right)
$$

- Equivalently, (by taking log both sides) it suffices to prove that

$$
\frac{\lambda^{2}}{2(1+\lambda / 3)} \leqslant(1+\lambda) \log (1+\lambda)-\lambda
$$

That is, we need to prove that the following function is positive for positive λ

$$
f(\lambda):=(1+\lambda) \log (1+\lambda)-\lambda-\frac{\lambda^{2}}{2(1+\lambda / 3)}
$$

Proving this result is left as an exercise!

- We have always been looking at the probability that the sum $\mathbb{S}_{n, p}$ significantly exceeds the expected value of the sum. We shall now consider the probability that the sum is $\mathbb{S}_{n, p}$ is significantly lower than the expected value of the sum.
- We can apply the Chernoff bound of the r.v. $1-\mathbb{X}_{i}$ and get the following result

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{S}_{n, p} \leqslant n(p-\varepsilon)\right] & =\mathbb{P}\left[n-S_{n, p} \geqslant n(1-p+\varepsilon)\right] \\
& \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(1-p+\varepsilon, 1-p)\right)
\end{aligned}
$$

By using the first form of our bounds that we studied today, we can conclude that
$\mathbb{P}\left[\mathbb{S}_{n, p} \leqslant n(p-\varepsilon)\right] \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(1-p+\varepsilon, 1-p)\right) \leqslant \exp \left(-2 n \varepsilon^{2}\right)$

- We are, however, interested in obtaining a bound where the deviation is multiplicative. That is,

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \leqslant n p(1-\lambda)\right] \leqslant ? ?
$$

where $1>\lambda>0$.

- We shall prove the following bound

Theorem

For $1>\lambda>0$, we have

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{S}_{n, p} \leqslant n p(1-\lambda)\right] & \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(1-p(1-\lambda), 1-p)\right) \\
& \leqslant \exp \left(-\lambda^{2} n p / 2\right)
\end{aligned}
$$

- We shall proceed just like the proof of the "second form." It suffices to prove that

$$
\mathrm{D}_{\mathrm{KL}}(1-p(1-\lambda), 1-p) \geqslant \lambda^{2} p / 2
$$

- Let us expand and write $\mathrm{D}_{\mathrm{KL}}(1-p(1-\lambda), 1-p)$ as follows

$$
(1-p(1-\lambda)) \log \frac{1-p(1-\lambda)}{1-p}+p(1-\lambda) \log (1-\lambda)
$$

Note that

$$
\begin{aligned}
& (1-p(1-\lambda)) \log \frac{1-p(1-\lambda)}{1-p} \\
= & -(1-p(1-\lambda)) \log \frac{1-p}{1-p(1-\lambda)} \\
= & -(1-p(1-\lambda)) \log \left(1-\frac{\lambda p}{1-p(1-\lambda)}\right) \\
\geqslant & -(1-p(1-\lambda)) \cdot\left(-\frac{\lambda p}{1-p(1-\lambda)}\right)=\lambda p
\end{aligned}
$$

The last inequality is from the fact that $1-x \leqslant \exp (-x)$ for all $x \geqslant 0$. (Comment: Since there is a negative sign in front, the inequality is in the opposite direction when substituted)

- Substituting this result, we get that

$$
\mathrm{D}_{\mathrm{KL}}(1-p(1-\lambda), 1-p) \geqslant \lambda p+p(1-\lambda) \log (1-\lambda)
$$

So, it suffices to prove that

$$
\lambda p+p(1-\lambda) \log (1-\lambda) \geqslant \lambda^{2} p / 2
$$

Or, equivalently, we need to prove that

$$
\lambda+(1-\lambda) \log (1-\lambda) \geqslant \lambda^{2} / 2
$$

- This proof is done using the following observations using the Taylor expansion of $\log (1-\lambda)$

$$
\begin{aligned}
\log (1-\lambda) & =\sum_{i \geqslant 1}-\frac{\lambda^{i}}{i} \\
(1-\lambda) \log (1-\lambda) & =-\lambda+\sum_{i \geqslant 2}\left(\frac{1}{i-1}-\frac{1}{i}\right) \lambda^{i} \\
& =-\lambda+\sum_{i \geqslant 2} \frac{1}{i(i-1)} \lambda^{i} \\
\lambda+(1-\lambda) \log (1-\lambda) & =\sum_{i \geqslant 2} \frac{1}{i(i-1)} \lambda^{i} \\
& \geqslant \lambda^{2} / 2
\end{aligned}
$$

Conclusion

To conclude, let us summarize the results that we derived today.

Theorem

The random variables $\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}$ are independent and $0 \leqslant \mathbb{X}_{i} \leqslant 1$. Let $\mathbb{S}_{n, p}:=\mathbb{X}_{1}+\cdots+\mathbb{X}_{n}$. Furthermore, we define $p:=\left(\mathbb{E}\left[\mathbb{X}_{1}\right]+\cdots+\mathbb{E}\left[\mathbb{X}_{n}\right]\right) / n$. Then, the following results hold
(1) For $\varepsilon \geqslant 0$, we have

$$
\begin{aligned}
& \mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right] \leqslant \exp \left(-2 n \varepsilon^{2}\right), \text { and } \\
& \mathbb{P}\left[\mathbb{S}_{n, p} \leqslant n(p-\varepsilon)\right] \leqslant \exp \left(-2 n \varepsilon^{2}\right)
\end{aligned}
$$

(2) For $\lambda \geqslant 0$, we have

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n p(1+\lambda)\right] \leqslant \exp \left(-\lambda^{2} n p / 2(1+\lambda / 3)\right)
$$

(3) For $1>\lambda \geqslant 0$, we have

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \leqslant n p(1-\lambda)\right] \leqslant \exp \left(-\lambda^{2} n p / 2\right)
$$

