Lecture 10: Chernoff Bound: Generalizations

Concentration Bounds

(1日) (日) (日) (日)

Our objective is to generalize the Chernoff Bound that we proved in the previous lecture. Let us first recall the Chernoff bound result that we proved.

• Let $\mathbb X$ be a r.v. over $\{0,1\}$ such that $\mathbb P\left[\mathbb X=0\right]=1-p$ and $\mathbb P\left[\mathbb X=1\right]=p$

• Let
$$\mathbb{S}_{n,p} = \mathbb{X}^{(1)} + \mathbb{X}^{(2)} + \cdots + \mathbb{X}^{(n)}$$

• Chernoff bound states that

$$\mathbb{P}\left[\mathbb{S}_{n,p} \ge n(p+\varepsilon)\right] \le \exp(-n\mathrm{D}_{\mathrm{KL}}\left(p+\varepsilon,p\right))$$

伺下 イヨト イヨト

We shall generalize this result in two ways

• For $1 \le i \le n$, let \mathbb{X}_i be a r.v. over $\{0, 1\}$ such that $\mathbb{P}[\mathbb{X}_i = 0] = 1 - p_i$ and $\mathbb{P}[\mathbb{X}_i = 1] = p_i$. Each \mathbb{X}_i is independent of the other \mathbb{X}_j s. Let $\mathbb{S}_{n,p} = \mathbb{X}_1 + \mathbb{X}_2 + \cdots + \mathbb{X}_n$, where $p = (p_1 + \cdots + p_n)/n$.

2 For $1 \leq i \leq n$, let \mathbb{X}_i be a r.v. over [0, 1] such that $\mathbb{E}[\mathbb{X}_i] = p_i$.

Despite these two generalizations, the following bound continues to hold true.

$$\mathbb{P}\left[\mathbb{S}_{n,p} \ge n(p+\varepsilon)\right] \le \exp(-n\mathrm{D}_{\mathrm{KL}}\left(p+\varepsilon,p\right))$$

(日本)(日本)(日本)

First Generalization I

- Let $X_1, X_2, ..., \mathbb{X}_n$ be independent random variables such that $\mathbb{P}[\mathbb{X}_i = 0] = 1 p_i$ and $\mathbb{P}[\mathbb{X}_i = 1] = p_i$, for $1 \le i \le n$.
- Let $p := (p_1 + p_2 + \dots + p_n)/n$
- Define $\mathbb{S}_{n,p} = \mathbb{X}_1 + \mathbb{X}_2 + \cdots + \mathbb{X}_n$
- We bound the following probability. For any H > 1, we have

$$\mathbb{P}\left[\mathbb{S}_{n,p} \ge n(p+\varepsilon)\right] = \mathbb{P}\left[H^{\mathbb{S}_{n,p}} \ge H^{n(p+\varepsilon)}\right]$$

Now, we apply the Markov inequality

$$\mathbb{P}\left[H^{\mathbb{S}_{n,p}} \geqslant H^{n(p+\varepsilon)}\right] \leqslant \frac{\mathbb{E}\left[H^{\mathbb{S}_{n,p}}\right]}{H^{n(p+\varepsilon)}} = \frac{\mathbb{E}\left[H^{\sum_{i=1}^{n}\mathbb{X}_{i}}\right]}{H^{n(p+\varepsilon)}} = \frac{\mathbb{E}\left[\prod_{i=1}^{n}H^{\mathbb{X}_{i}}\right]}{H^{n(p+\varepsilon)}}$$

向下 イヨト イヨト

First Generalization II

• Since, each X_i are independent of other X_j s, we have

$$\frac{\mathbb{E}\left[\prod_{i=1}^{n}H^{\mathbb{X}_{i}}\right]}{H^{n(p+\varepsilon)}} = \frac{\prod_{i=1}^{n}\mathbb{E}\left[H^{\mathbb{X}_{i}}\right]}{H^{n(p+\varepsilon)}} = \frac{\prod_{i=1}^{n}1 - p_{i} + p_{i}H}{H^{n(p+\varepsilon)}}$$

• We apply the AM-GM inequality to conclude that

$$\prod_{i=1}^{n} 1 - p_i + p_i H \leqslant \left(\frac{\sum_{i=1}^{n} 1 - p_i + p_i H}{n}\right)^n$$

Equality holds if and only if all $p_i = p$. This bound can now be substituted to conclude

$$\frac{\mathbb{E}\left[\prod_{i=1}^{n}H^{\mathbb{X}_{i}}\right]}{H^{n(p+\varepsilon)}} \leqslant \left(\frac{1-p+pH}{H^{p+\varepsilon}}\right)^{n}$$

Concentration Bounds

• This is identical to the bound that we had in the Chernoff bound proof. We can use the following choice of *H* in the bound above to obtain the tightest possible bound

$$H^* = \frac{(p+\varepsilon)(1-p)}{p(1-p-\varepsilon)}$$

So, we get the bound

$$\mathbb{P}\left[\mathbb{S}_{n,p} \ge n(p+\varepsilon)\right] \le \exp(-n\mathrm{D}_{\mathrm{KL}}\left(p+\varepsilon,p\right))$$

Concentration Bounds

伺 ト イヨ ト イヨト

- Let 1 ≤ X_i ≤ 1 be a r.v. such that E [X_i] = p_i and each X_i is independent of other X_js
- Just like the previous setting, we have $\mathbb{S}_{n,p} = \mathbb{X}_1 + \mathbb{X}_2 + \cdots + \mathbb{X}_n$, where $p = (p_1 + p_2 + \cdots + p_n)/n$
- Note that if we prove the following bound, then we shall be done

$$\mathbb{E}\left[H^{\mathbb{X}_i}\right] \leqslant 1 - p_i + p_i H$$

We can use this bound in the previous proof and arrive at the identical upper-bound.

Second Generalization II

The proof follows from the following

$$\begin{split} \mathbb{E}\left[H^{\mathbb{X}_{i}}\right] &= \sum_{x \in [0,1]} \mathbb{P}\left[\mathbb{X}_{i} = x\right] \cdot H^{x} \\ &= \sum_{x \in [0,1]} \mathbb{P}\left[\mathbb{X}_{i} = x\right] \cdot H^{(1-x) \cdot 0 + x \cdot 1} \\ &\leqslant \sum_{x \in [0,1]} \mathbb{P}\left[\mathbb{X}_{i} = x\right] \cdot \left((1-x) \cdot H^{0} + x \cdot H^{1}\right) \quad , \text{ By Jensen's} \\ &= \sum_{x \in [0,1]} \mathbb{P}\left[\mathbb{X}_{i} = x\right] \cdot (1-x + xH) \\ &= \sum_{x \in [0,1]} \mathbb{P}\left[\mathbb{X}_{i} = x\right] - \sum_{x \in [0,1]} \mathbb{P}\left[\mathbb{X}_{i} = x\right] \cdot x + H \sum_{x \in [0,1]} \mathbb{P}\left[\mathbb{X}_{i} = x\right] \cdot x \\ &= 1 - p_{i} + p_{i}H \quad , \text{ Because } \mathbb{E}\left[\mathbb{X}_{i}\right] = p_{i} \end{split}$$

The appendix provides additional intuition for this analysis.

Concentration Bounds

Appendix: Intuition for the Analysis I

- Let $\mathbb X$ be an r.v. over [a,b] such that $\mathbb E\left[\mathbb X\right]=\mu$
- Let f: ℝ → ℝ be a concave upwards function (that is, it looks like f(x) = x²)
- Jensen's inequality states that $f(\mathbb{E}[\mathbb{X}]) \leq \mathbb{E}[f(\mathbb{X})]$, and equality holds if and only if \mathbb{X} has its entire probability mass at μ . Therefore, we can conclude that $f(\mu) \leq \mathbb{E}[f(\mathbb{X})]$
- So, we have a lower-bound on E [f(X)]. Now, we are interested in obtaining an upper-bound on E [f(X)]
- For the upper-bound note that is X deposits more probability mass away from μ, then E [f(X)] increases. In fact, increasing the mass further away increases E [f(X)] more. So, the maximum value of E [f(X)] is achieved when X deposits the entire probability mass either at a or b only. Let us find such a probability distribution under the constraint that E [X] = μ

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Appendix: Intuition for the Analysis II

• Suppose $\mathbb{P}[\mathbb{X}^* = a] = p$. Then, we have $\mathbb{P}[\mathbb{X}^* = b] = 1 - p$. Further, the constraint $\mathbb{E}[\mathbb{X}^*] = \mu$ becomes $pa + (1 - p)b = \mu$. Solving, we get

$$p = rac{b-\mu}{b-a}$$

Therefore, we get $1 - p = \frac{\mu - a}{b - a}$. For this probability, we get

$$\mathbb{E}\left[f(\mathbb{X}^*)
ight]=rac{b-\mu}{b-a}f(a)+rac{\mu-a}{b-a}f(b)$$

So, we expect the following bound to hold for a general r.v. $\ensuremath{\mathbb{X}}$

$$\mathbb{E}\left[f(\mathbb{X})
ight] \leqslant \mathbb{E}\left[f(\mathbb{X}^*)
ight] = rac{b-\mu}{b-a}f(a) + rac{\mu-a}{b-a}f(b)$$

This is not a formal proof. Let us prove this intuition formally.

Concentration Bounds

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ●

Appendix: Intuition for the Analysis III

Let X be an r.v. over [a, b] with E [X] = μ. Note that by Jensen's inequality, we have

$$f(x) = f\left(\frac{b-x}{b-a}a + \frac{x-a}{b-a}b\right) \leqslant \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b)$$

Now, we take expectation on both sides to conclude that

$$\mathbb{E}\left[f(\mathbb{X})\right] \leqslant \mathbb{E}\left[\frac{b-\mathbb{X}}{b-a}f(a) + \frac{\mathbb{X}-a}{b-a}f(b)\right]$$
$$= \frac{b-\mathbb{E}\left[\mathbb{X}\right]}{b-a}f(a) + \frac{\mathbb{E}\left[\mathbb{X}\right]-a}{b-a}f(b)$$
$$= \frac{b-\mu}{b-a}f(a) + \frac{\mu-a}{b-a}f(b)$$

• To conclude, we have the following bound.

$$f(\mu) \leqslant \mathbb{E}\left[f(\mathbb{X})\right] \leqslant rac{b-\mu}{b-a}f(a) + rac{\mu-a}{b-a}f(b)$$

Concentration Bounds

伺 ト イヨ ト イヨ ト