Lecture 10: Chernoff Bound: Generalizations

Overview I

Our objective is to generalize the Chernoff Bound that we proved in the previous lecture. Let us first recall the Chernoff bound result that we proved.

- Let \mathbb{X} be a r.v. over $\{0,1\}$ such that $\mathbb{P}[\mathbb{X}=0]=1-p$ and $\mathbb{P}[\mathbb{X}=1]=p$
- Let $\mathbb{S}_{n, p}=\mathbb{X}^{(1)}+\mathbb{X}^{(2)}+\cdots+\mathbb{X}^{(n)}$
- Chernoff bound states that

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right] \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)\right)
$$

Overview II

We shall generalize this result in two ways
(1) For $1 \leqslant i \leqslant n$, let \mathbb{X}_{i} be a r.v. over $\{0,1\}$ such that $\mathbb{P}\left[\mathbb{X}_{i}=0\right]=1-p_{i}$ and $\mathbb{P}\left[\mathbb{X}_{i}=1\right]=p_{i}$. Each \mathbb{X}_{i} is independent of the other \mathbb{X}_{j} s. Let $\mathbb{S}_{n, p}=\mathbb{X}_{1}+\mathbb{X}_{2}+\cdots+\mathbb{X}_{n}$, where $p=\left(p_{1}+\cdots+p_{n}\right) / n$.
(2) For $1 \leqslant i \leqslant n$, let \mathbb{X}_{i} be a r.v. over $[0,1]$ such that $\mathbb{E}\left[\mathbb{X}_{i}\right]=p_{i}$.

Despite these two generalizations, the following bound continues to hold true.

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right] \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)\right)
$$

- Let $X_{1}, X_{2}, \ldots \mathbb{X}_{n}$ be independent random variables such that $\mathbb{P}\left[\mathbb{X}_{i}=0\right]=1-p_{i}$ and $\mathbb{P}\left[\mathbb{X}_{i}=1\right]=p_{i}$, for $1 \leqslant i \leqslant n$.
- Let $p:=\left(p_{1}+p_{2}+\cdots+p_{n}\right) / n$
- Define $\mathbb{S}_{n, p}=\mathbb{X}_{1}+\mathbb{X}_{2}+\cdots+\mathbb{X}_{n}$
- We bound the following probability. For any $H>1$, we have

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right]=\mathbb{P}\left[H^{\mathbb{S}_{n, p}} \geqslant H^{n(p+\varepsilon)}\right]
$$

- Now, we apply the Markov inequality

$$
\mathbb{P}\left[H^{\mathbb{S}_{n, p}} \geqslant H^{n(p+\varepsilon)}\right] \leqslant \frac{\mathbb{E}\left[H^{\mathbb{S}_{n, p}}\right]}{H^{n(p+\varepsilon)}}=\frac{\mathbb{E}\left[H^{\sum_{i=1}^{n} \mathbb{X}_{i}}\right]}{H^{n(p+\varepsilon)}}=\frac{\mathbb{E}\left[\prod_{i=1}^{n} H^{\mathbb{X}_{i}}\right]}{H^{n(p+\varepsilon)}}
$$

First Generalization II

- Since, each \mathbb{X}_{i} are independent of other $\mathbb{X}_{j} s$, we have

$$
\frac{\mathbb{E}\left[\prod_{i=1}^{n} H^{\mathbb{X}_{i}}\right]}{H^{n(p+\varepsilon)}}=\frac{\prod_{i=1}^{n} \mathbb{E}\left[H^{\mathbb{X}_{i}}\right]}{H^{n(p+\varepsilon)}}=\frac{\prod_{i=1}^{n} 1-p_{i}+p_{i} H}{H^{n(p+\varepsilon)}}
$$

- We apply the AM-GM inequality to conclude that

$$
\prod_{i=1}^{n} 1-p_{i}+p_{i} H \leqslant\left(\frac{\sum_{i=1}^{n} 1-p_{i}+p_{i} H}{n}\right)^{n}
$$

Equality holds if and only if all $p_{i}=p$. This bound can now be substituted to conclude

$$
\frac{\mathbb{E}\left[\prod_{i=1}^{n} H^{\mathbb{X}_{i}}\right]}{H^{n(p+\varepsilon)}} \leqslant\left(\frac{1-p+p H}{H^{p+\varepsilon}}\right)^{n}
$$

First Generalization III

- This is identical to the bound that we had in the Chernoff bound proof. We can use the following choice of H in the bound above to obtain the tightest possible bound

$$
H^{*}=\frac{(p+\varepsilon)(1-p)}{p(1-p-\varepsilon)}
$$

So, we get the bound

$$
\mathbb{P}\left[\mathbb{S}_{n, p} \geqslant n(p+\varepsilon)\right] \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)\right)
$$

- Let $1 \leqslant \mathbb{X}_{i} \leqslant 1$ be a r.v. such that $\mathbb{E}\left[\mathbb{X}_{i}\right]=p_{i}$ and each \mathbb{X}_{i} is independent of other $\mathbb{X}_{j} s$
- Just like the previous setting, we have $\mathbb{S}_{n, p}=\mathbb{X}_{1}+\mathbb{X}_{2}+\cdots+\mathbb{X}_{n}$, where $p=\left(p_{1}+p_{2}+\cdots+p_{n}\right) / n$
- Note that if we prove the following bound, then we shall be done

$$
\mathbb{E}\left[H^{\mathbb{X}_{i}}\right] \leqslant 1-p_{i}+p_{i} H
$$

We can use this bound in the previous proof and arrive at the identical upper-bound.

The proof follows from the following

$$
\begin{aligned}
\mathbb{E}\left[H^{\mathbb{X}_{i}}\right] & =\sum_{x \in[0,1]} \mathbb{P}\left[\mathbb{X}_{i}=x\right] \cdot H^{x} \\
& =\sum_{x \in[0,1]} \mathbb{P}\left[\mathbb{X}_{i}=x\right] \cdot H^{(1-x) \cdot 0+x \cdot 1} \\
& \leqslant \sum_{x \in[0,1]} \mathbb{P}\left[\mathbb{X}_{i}=x\right] \cdot\left((1-x) \cdot H^{0}+x \cdot H^{1}\right) \quad, \text { By Jensen's } \\
& =\sum_{x \in[0,1]} \mathbb{P}\left[\mathbb{X}_{i}=x\right] \cdot(1-x+x H) \\
& =\sum_{x \in[0,1]} \mathbb{P}\left[\mathbb{X}_{i}=x\right]-\sum_{x \in[0,1]} \mathbb{P}\left[\mathbb{X}_{i}=x\right] \cdot x+H \sum_{x \in[0,1]} \mathbb{P}\left[\mathbb{X}_{i}=x\right] \cdot x \\
& =1-p_{i}+p_{i} H \quad, \text { Because } \mathbb{E}\left[\mathbb{X}_{i}\right]=p_{i}
\end{aligned}
$$

The appendix provides additional intuition for this analysis.

Appendix: Intuition for the Analysis I

- Let \mathbb{X} be an r.v. over $[a, b]$ such that $\mathbb{E}[\mathbb{X}]=\mu$
- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a concave upwards function (that is, it looks like $f(x)=x^{2}$)
- Jensen's inequality states that $f(\mathbb{E}[\mathbb{X}]) \leqslant \mathbb{E}[f(\mathbb{X})]$, and equality holds if and only if \mathbb{X} has its entire probability mass at μ. Therefore, we can conclude that $f(\mu) \leqslant \mathbb{E}[f(\mathbb{X})]$
- So, we have a lower-bound on $\mathbb{E}[f(\mathbb{X})]$. Now, we are interested in obtaining an upper-bound on $\mathbb{E}[f(\mathbb{X})]$
- For the upper-bound note that is \mathbb{X} deposits more probability mass away from μ, then $\mathbb{E}[f(\mathbb{X})]$ increases. In fact, increasing the mass further away increases $\mathbb{E}[f(\mathbb{X})]$ more. So, the maximum value of $\mathbb{E}[f(\mathbb{X})]$ is achieved when \mathbb{X} deposits the entire probability mass either at a or b only. Let us find such a probability distribution under the constraint that $\mathbb{E}[\mathbb{X}]=\mu$

Appendix: Intuition for the Analysis II

- Suppose $\mathbb{P}\left[\mathbb{X}^{*}=a\right]=p$. Then, we have $\mathbb{P}\left[\mathbb{X}^{*}=b\right]=1-p$. Further, the constraint $\mathbb{E}\left[\mathbb{X}^{*}\right]=\mu$ becomes $p a+(1-p) b=\mu$. Solving, we get

$$
p=\frac{b-\mu}{b-a}
$$

Therefore, we get $1-p=\frac{\mu-a}{b-a}$. For this probability, we get

$$
\mathbb{E}\left[f\left(\mathbb{X}^{*}\right)\right]=\frac{b-\mu}{b-a} f(a)+\frac{\mu-a}{b-a} f(b)
$$

So, we expect the following bound to hold for a general r.v. \mathbb{X}

$$
\mathbb{E}[f(\mathbb{X})] \leqslant \mathbb{E}\left[f\left(\mathbb{X}^{*}\right)\right]=\frac{b-\mu}{b-a} f(a)+\frac{\mu-a}{b-a} f(b)
$$

This is not a formal proof. Let us prove this intuition formally.

Appendix: Intuition for the Analysis III

- Let \mathbb{X} be an r.v. over $[a, b]$ with $\mathbb{E}[\mathbb{X}]=\mu$. Note that by Jensen's inequality, we have

$$
f(x)=f\left(\frac{b-x}{b-a} a+\frac{x-a}{b-a} b\right) \leqslant \frac{b-x}{b-a} f(a)+\frac{x-a}{b-a} f(b)
$$

Now, we take expectation on both sides to conclude that

$$
\begin{aligned}
\mathbb{E}[f(\mathbb{X})] & \leqslant \mathbb{E}\left[\frac{b-\mathbb{X}}{b-a} f(a)+\frac{\mathbb{X}-a}{b-a} f(b)\right] \\
& =\frac{b-\mathbb{E}[\mathbb{X}]}{b-a} f(a)+\frac{\mathbb{E}[\mathbb{X}]-a}{b-a} f(b) \\
& =\frac{b-\mu}{b-a} f(a)+\frac{\mu-a}{b-a} f(b)
\end{aligned}
$$

- To conclude, we have the following bound.

$$
f(\mu) \leqslant \mathbb{E}[f(\mathbb{X})] \leqslant \frac{b-\mu}{b-a} f(a)+\frac{\mu-a}{b-a} f(b)
$$

