
Lecture 09: Chernoff Bound
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Problem Introduction I

Let X be a coin that outputs 1 with probability p, and outputs
0 with probability 1− p. The exact probability p is not known.
Our objective is to estimate the probability p.

Informally, our strategy is to toss this coin (independently) n
times and report the fraction of outcomes that were heads.
We want to understand the probability that this estimate is far
from the real value of p.

Let X(1),X(2), . . . ,X(n) be n independent coin tosses that are
identically distributed as the random variable X
We are interested in studying the random variable

Sn,p = X(1) + X(2) +· · ·+ X(n)

This random variable Sn,p represents the total number of
heads in the n coin tosses.
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Problem Introduction II

Formally, given ε > 0, we are interested in computing the
probability that

P
[
Sn,p > n(p + ε)

]
6?

That is, we are interested to prove that the probability of our
estimate being “much larger” than p is small.
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Approach using Stirling’s Approximation I

Suppose we have seen i heads. We can explicitly compute the

probability that Sn,p = i . as follows There are

(
n
i

)
ways to

choose the coins that turn up heads. The probability that
these coins turn up heads is pi . Moreover, the probability that
the remaining coins turn up tails is (1− p)n−i . So, we can
claim the following

P
[
Sn,p = i

]
=

(
n
i

)
pi (1− p)n−i

We can use this result to compute our desired probability as
follows

P
[
Sn,p > n(p + ε)

]
=

∑
i>n(p+ε)

(
n
i

)
pi (1− p)n−i
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Approach using Stirling’s Approximation II

For simplicity, let us assume that n(p + ε) = k is an integer

Upper-bound. We can prove that the maximum element(
n
i

)
pi (1− p)n−i , where i > k , is achieved at i = k . We can

use this observation to upper-bound the probability expression.

Concentration Bounds



Approach using Stirling’s Approximation III

P
[
Sn,p > n(p + ε)

]
=
∑
i>k

(
n
i

)
pi (1 − p)n−i

6
∑
i>k

(
n
k

)
pk(1 − p)n−k

= (n − k)

(
n
k

)
pk(1 − p)n−k

6
n − k√

2πn(p + ε)(1 − p − ε)
exp

(
−nDKL (p + ε, p)

)
=

√
n − k

2π(p + ε)
exp

(
−nDKL (p + ε, p)

)
Basically, this bound proves that

P
[
Sn,p > n(p + ε)

]
= O(

√
n) exp

(
−nDKL (p + ε, p)

)
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Approach using Stirling’s Approximation IV

Lower-bound. We can prove a lower bound by using the fact
that “the probability of observing > k heads” is more than “the
probability of observing k heads.”

P
[
Sn,p = n(p + ε)

]
> P [Sn,p = k]

=

(
n
k

)
pk(1 − p)n−k

>
1√

8πn(p + ε)(1 − p − ε)
exp

(
−nDKL (p + ε, p)

)
Basically, this bound proves that

P
[
Sn,p > n(p + ε)

]
= Ω(1/

√
n) exp

(
−nDKL (p + ε, p)

)
Conclusion. The upper and the lower-bounds can be
combined to conclude that P

[
Sn,p > n(p + ε)

]
is

poly(n) exp(−nDKL (p + ε, p)).
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Chernoff Bound: Proof I

Let us now upper bound the probability P
[
Sn,p > n(p + ε)

]
using the Chernoff bound. The upper-bound will be slightly
better than what we obtained using the Stirling approximation.

Recall that X is a r.v. over the sample space {0, 1}. Moreover,
we have P [X = 1] = p and P [X = 0] = 1− p. Note that we
have E [X] = p.

We are studying the r.v.

Sn,p = X(1) + X(2) +· · ·+ X(n)

Each random variable X(i) is an independent copy of the
random variable X.
Note that we have E

[
Sn,p

]
= nE [X] = np, by linearity of

expectation
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Chernoff Bound: Proof II

Theorem (Chernoff Bound)

P
[
Sn,p > n(p + ε)

]
6 exp

(
−nDKL (p + ε, p)

)
Before we proceed to proving this result, let us interpret this
theorem statement. Suppose p = 1/2 and t = 1/4. Then, it is
exponentially unlikely that Sn,p surpasses n(1/2 + 1/4) = 3n/4
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Chernoff Bound: Proof III

Let us begin with the proof.

We are interested in upper-bounding the probability

P
[
Sn,p > n(p + ε)

]
Note that, for any positive h, we have

P
[
Sn,p > n(p + ε)

]
= P

[
exp(hSn,p) > exp(hn(p + ε))

]
The exact value of h will be determined later. The intuition of
using the exp(·) function is to consider all the moments of Sn,p
Now, we apply Markov inequality to obtain

P
[
exp(hSn,p) > exp(hn(p + ε))

]
6

E
[
exp(hSn,p)

]
exp(hn(p + ε))
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Chernoff Bound: Proof IV

Now, we need an observation. Suppose A and B are two
independent random variables. Then, we have
E
[
exp(A + B)

]
= E

[
exp(A)

]
· E
[
exp(B)

]
. We emphasize

that A and B have to be independent to apply this result.

Note that we have Sn,p =
∑n

i=1 X(i). So, we can apply the
previous observation iteratively to obtain the following result.

E
[
exp(hSn,p)

]
exp(hn(p + ε))

=

∏n
i=1 E

[
exp(hX(i))

]
exp(hn(p + ε))

=

(
E
[
exp(hX)

]
exp(h(p + ε))

)n

Recall that X is a random variable such that P [X = 0] = 1− p
and P [X = 1] = p. So, the random variable exp(hX) is such
that P

[
exp(hX) = 1

]
= 1− p and P

[
exp(hX) = exp(h)

]
= p.

Therefore, we can conclude that

E
[
exp(hX)

]
= (1− p) · 1 + p · exp(h) = 1− p + p exp(h)
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Chernoff Bound: Proof V

Substituting this value, we get(
E
[
exp(hX)

]
exp(h(p + ε))

)n

=

(
1− p + p exp(h)

exp(h(p + ε))

)n

So, let us take a pause at this point and recall that what we
have proven thus far. We have shown that, for all positive h,
the following bound holds

P
[
Sn,p > n(p + ε)

]
6

(
1− p + p exp(h)

exp(h(p + ε))

)n
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Chernoff Bound: Proof VI

To obtain the tightest upper-bound we should use the value of
h = h∗ that minimizes the right-hand size expression. For
simplicity let us make a variable substitution H = exp(h). Let
us define

f (H) =
1− p + pH

Hp+ε

Our objective is to find H = H∗ that minimizes f (H).

Let us compute f ′(H) and solve for f ′(H∗) = 0. Note that we
have

f ′(H) =
p

Hp+ε
− (p + ε)(1− p + pH)

Hp+ε+1

The solution f ′(H∗) = 0 is given by

H∗ =
(p + ε)(1− p)

(1− p − ε)p
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Chernoff Bound: Proof VII

We can check that, for ε > 0, we have H∗ > 1, that is, h > 0.
We can consider the second derivative f ′′(H) to prove that
this extremum is a minima.
Instead of computing f ′′(H), we can use a shortcut technique.
We know that at H∗, the function f (H) either has a maximum
or a minimum. Moreover, there is only one extremum of the
function f (H). Note that limH→∞ f (H) =∞, so f (H∗) must
be a minimum.
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Chernoff Bound: Proof VIII

Now, let us substitute the value of h∗ to obtain

P
[
Sn,p > n(p + ε)

]
6

1− p + (1−p)(p+ε)
1−p−ε(

(1−p)(p+ε)
p(1−p−ε)

)p+ε


n

=

 1−p
1−p−ε(

(1−p)(p+ε)
p(1−p−ε)

)p+ε


n

=

((
p

p + ε

)p+ε( 1− p

1− p − ε

)1−p−ε
)n

= exp(−nDKL (p + ε, p))
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