


Problem Introduction |

o Let X be a coin that outputs 1 with probability p, and outputs
0 with probability 1 — p. The exact probability p is not known.
Our objective is to estimate the probability p.

e Informally, our strategy is to toss this coin (independently) n
times and report the fraction of outcomes that were heads.
We want to understand the probability that this estimate is far
from the real value of p.

o Let XM X@ . X( be nindependent coin tosses that are
identically distributed as the random variable X

@ We are interested in studying the random variable
Snp — X(l) +X(2) 4.+ X(”)

This random variable S, , represents the total number of
heads in the n coin tosses.
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Problem Introduction Il

@ Formally, given € > 0, we are interested in computing the
probability that

P [Sn,p P n(P+€)] <?

That is, we are interested to prove that the probability of our
estimate being “much larger” than p is small.
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Approach using Stirling's Approximation |

@ Suppose we have seen i heads. We can explicitly compute the
. . n
probability that S, , = i. as follows There are i | ways to

choose the coins that turn up heads. The probability that
these coins turn up heads is p’. Moreover, the probability that
the remaining coins turn up tails is (1 — p)"~". So, we can
claim the following

== (JJsaor-

@ We can use this result to compute our desired probability as
follows

P [Sn,p Z n(P + E)] = Z (7) pi(l _ p)"*’.
i>n(pte)
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Approach using Stirling's Approximation ||

e For simplicity, let us assume that n(p 4 €) = k is an integer

e Upper-bound. We can prove that the maximum element
(7) p'(1 — p)"~', where i > k, is achieved at i = k. We can

use this observation to upper-bound the probability expression.
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Approach using Stirling’s Approximation |ll

< n—k
V2rn(p+e)(1—p—e¢)

=, /#—fs) exp (—nDkL (p + €, p))

Basically, this bound proves that

exp (—nDkL (p + €, p))

P [Shp > n(p+¢)] = O(v/n)exp (—nDkr, (p + €, p))
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Approach using Stirling’s Approximation |V

e Lower-bound. We can prove a lower bound by using the fact
that “the probability of observing > k heads” is more than “the
probability of observing k heads.”

P [Snp = n(p+¢)] > P[Snp = K]

= <Z> p(1—p)" "

N 1
V8mn(p+e)(1—p—e)

Basically, this bound proves that

exp (—nDxkL (p + ¢, p))

P [Snp = n(p+¢e)] = Q(1/vn)exp (—nDky, (p + €, p))

@ Conclusion. The upper and the lower-bounds can be
combined to conclude that P [S,, > n(p +¢)] is

poly(n) exp(—nDxr, (p + €, p)).
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Chernoff Bound: Proof |

@ Let us now upper bound the probability P [S,,,p > n(p+ s)]
using the Chernoff bound. The upper-bound will be slightly
better than what we obtained using the Stirling approximation.

@ Recall that X is a r.v. over the sample space {0,1}. Moreover,
we have P[X =1] = p and P[X = 0] =1 — p. Note that we
have E [X] = p.

@ We are studying the r.v.
Snp = xM 4+ x@ 4.0 L x(

Each random variable X()) is an independent copy of the
random variable X.

o Note that we have E [S, ] = nE [X] = np, by linearity of
expectation
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Chernoff Bound: Proof Il

Theorem (Chernoff Bound)

P [Snp = n(p +¢)] < exp (—nDxr (p + ¢, p))

Before we proceed to proving this result, let us interpret this
theorem statement. Suppose p =1/2 and t = 1/4. Then, it is
exponentially unlikely that S, , surpasses n(1/2 +1/4) = 3n/4
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Let us begin with the proof.
@ We are interested in upper-bounding the probability

P [Sn,p = n(P + 5)]
@ Note that, for any positive h, we have
P [Snp = n(p+e)] =P [exp(hSn,p) = exp(hn(p + €))]

The exact value of h will be determined later. The intuition of
using the exp(-) function is to consider all the moments of S, ,

@ Now, we apply Markov inequality to obtain

E [exp(hSn,p)]

P [exp(hSp,p) = exp(hn(p + €))] < exp(hn(p + ¢))
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Chernoff Bound: Proof IV

@ Now, we need an observation. Suppose A and B are two
independent random variables. Then, we have
E [exp(A + B)| = E [exp(A)] - E [exp(B)]. We emphasize
that A and B have to be independent to apply this result.

o Note that we have S,, = > " ; X So, we can apply the
previous observation iteratively to obtain the following result.

E [exp(hSnp)] [[-.E {exp(hX("))] _ ( E [exp(hX)] )n

exp(hn(p+<)  exp(hn(p + <)) exp(h(p + <))

@ Recall that X is a random variable such that P[X =0] =1—p
and P[X = 1] = p. So, the random variable exp(hX) is such
that P [exp(hX) = 1] =1 — p and PP [exp(hX) = exp(h)] = p.
Therefore, we can conclude that

E [exp(hX)] = (1= p) -1+ p-exp(h) =1 — p+ pexp(h)
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Chernoff Bound: Proof V

@ Substituting this value, we get

( E [exp(hX)]))” _ (1—p+pexp(h>>"

exp(h(p + ¢) exp(h(p +€))

@ So, let us take a pause at this point and recall that what we
have proven thus far. We have shown that, for all positive h,
the following bound holds

P [Snp = n(p+e)] < <1_P+Pexp(h)>”

exp(h(p + ¢))
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Chernoff Bound: Proof VI

@ To obtain the tightest upper-bound we should use the value of
h = h* that minimizes the right-hand size expression. For
simplicity let us make a variable substitution H = exp(h). Let
us define

1—p+pH

f(H) - Hp+e

Our objective is to find H = H* that minimizes f(H).

o Let us compute f/(H) and solve for f'(H*) = 0. Note that we

have ( (1 H)
/ P pt+e)l—p+p
f (H) ~ Hpte - Hp+e+1

The solution f'(H*) = 0 is given by

. (p+e)1-p)
=G
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Chernoff Bound: Proof VII

We can check that, for € > 0, we have H* > 1, that is, h > 0.
We can consider the second derivative f”/(H) to prove that
this extremum is a minima.

Instead of computing f”(H), we can use a shortcut technique.
We know that at H*, the function f(H) either has a maximum
or a minimum. Moreover, there is only one extremum of the
function f(H). Note that limy_, f(H) = oo, so f(H*) must
be a minimum.
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Chernoff Bound: Proof VIII

@ Now, let us substitute the value of h* to obtain

1—p+ (1—p)(p+e)

P|S,, = n(p+e)| < 1=p—e
[Snp 2 nlp +<) ((1—p)<p+s>)"+€
p(1—p—e)

n
1—P
1—p—

(( -2 )(p ;))"*E

= exp(—nDxr (p + €, p))
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