Lecture 06: Expected Max-Load & Poisson Approximation Theorem

- There are m = n balls
- Each ball is thrown uniformly and independently at random into *n* bins
- \bullet Objective. Understand the behavior of $\mathbb{E}\left[\mathbb{L}_{\mathsf{max}}\right]$

We shall show the following result

Theorem (Expected Max-Load)

Let m = n balls be thrown uniformly and independently at random into n bins. Let \mathbb{L}_{max} be the random variable denoting the maximum load of the bins. Then, we have the following result.

$$\mathbb{E}\left[\mathbb{L}_{\max}\right] = \Theta\left(\frac{\log n}{\log\log n}\right)$$

• Our idea is to prove the following. For some positive constant *c*, we have

$$\mathbb{E}\left[\mathbb{L}_{\max}\right] \leqslant c\left(\frac{\log n}{\log\log n}\right)$$

• Our strategy is to use the following trick to calculate the expectation of a random variable $\mathbb X$ over natural numbers

Π

$$\mathbb{E} \left[\mathbb{X} \right] = \sum_{i \ge 1} i \cdot \mathbb{P} \left[\mathbb{X} = i \right]$$
$$= \sum_{i \ge 1} \sum_{j \ge i} \mathbb{P} \left[\mathbb{X} = j \right]$$
$$= \sum_{i \ge 1} \mathbb{P} \left[\mathbb{X} \ge i \right]$$

Upper Bound II

• So, we have

$$\mathbb{E}\left[\mathbb{L}_{\max}\right] = \sum_{i \ge 1} \mathbb{P}\left[\mathbb{L}_{\max} \ge i\right]$$

• We begin with the following result

Lemma

For any $\ell \in \mathbb{N}$, we have the following bound

$$\mathbb{P}\left[\mathbb{L}_{j} \ge \ell\right] \leqslant \binom{n}{\ell} \frac{1}{n^{\ell}} \leqslant \frac{1}{\ell!}$$

Proof Outline.

- The probability that bin j receives $\geqslant \ell$ balls is (at most) the probability of the following event
 - We choose a set of ℓ balls from *n* balls in $\binom{n}{\ell}$ ways
 - $\bullet\,$ We compute the probability that these ℓ balls land in bin j
 - The other balls can go anywhere (including falling in bin i) [≥] Max-Load

Upper Bound III

Food for Thought. Why is this probability expression an inequality and not an equality?

- Let ℓ^* be the smallest integer such that $(\ell^*)! \ge n^2$
- Exercise. Prove that $\ell^* \leq c \frac{\log n}{\log \log n}$ for some positive constant c
- So, we have $\mathbb{P}\left[\mathbb{L}_{j} \geqslant \ell^{*}\right] \leqslant 1/n^{2}$
- Now, by Union Bound, we have

$$\mathbb{P}\left[\mathbb{L}_1 \geqslant \ell^* \text{ or } \mathbb{L}_2 \geqslant \ell^* \text{ or } \cdots \text{ or } \mathbb{L}_n \geqslant \ell^*\right] \leqslant n \cdot \frac{1}{n^2} = \frac{1}{n}$$

That is, we have

$$\mathbb{P}\left[\mathbb{L}_{\max} \geqslant \ell^*\right] \leqslant \frac{1}{n}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

• Now, we are at a position to upper-bound the expected max-load

$$\mathbb{E} \left[\mathbb{L}_{\max} \right] = \sum_{i \ge 1} \mathbb{P} \left[\mathbb{L}_{\max} \ge i \right]$$
$$= \sum_{i=1}^{\ell^* - 1} \mathbb{P} \left[\mathbb{L}_{\max} \ge i \right] + \sum_{i=\ell^*}^n \mathbb{P} \left[\mathbb{L}_{\max} \ge i \right]$$
$$= (\ell^* - 1) \cdot 1 + (n - \ell^*) \cdot \frac{1}{n}$$
$$< \ell^*$$

▲御▶ ▲理▶ ▲理≯

э