Homework 3 (150 points)

1. $(15+15+15+\mathbf{1 5}$ points) Fourier Analysis on Larger Domains. Recall that we apply discrete Fourier Analysis on the Boolean Hypercube to analyze functions with domain $\{0,1\}^{n}$. We will generalize this construction to arbitrary domains.
(a) Consider the space of all function $\mathbb{Z}_{p} \rightarrow \mathbb{C}$, where p is a prime number. Here \mathbb{Z}_{p} is the set $\{0,1, \ldots, p-1\}$. And addition and multiplication of two elements from this set is defined using integer addition and multiplication, respectively, $\bmod p$. The set of complex numbers is represented by \mathbb{C}.
Suppose $f, g: \mathbb{Z}_{p} \rightarrow \mathbb{C}$ be two functions. Recall that the complex conjugate of a complex number $z=a+\imath b$, represented by \bar{z}, is defined to be $a-\imath b$. The inner-product of these two functions is defined by

$$
\langle f, g\rangle:=\frac{1}{p} \sum_{x \in \mathbb{Z}_{p}} f(x) \overline{g(x)}
$$

Let $\omega_{p}:=\exp (2 \pi \imath / p)$ and define $\chi_{a}(x):=\omega_{p}^{a x}$, for $a \in \mathbb{Z}_{p}$. Prove that $\left\{\chi_{a}: a \in \mathbb{Z}_{p}\right.$ is an orthonormal basis for the space of all function $\mathbb{Z}_{p} \rightarrow \mathbb{C}$.
(b) Consider the space of all functions $\mathbb{Z}_{p}^{n} \rightarrow \mathbb{C}$. Define the inner-product of functions, write the Fourier basis functions, and show their orthonormality.
(c) Consider the space of all functions $\mathbb{Z}_{p} \times \mathbb{Z}_{q} \rightarrow \mathbb{C}$, for primes p and q. The primes p and q need not necessarily be distinct. Define the inner-product of functions, write the Fourier basis functions, and show their orthonormality.
(d) Consider the space of all functions $\mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \cdots \times \mathbb{Z}_{p_{n}} \rightarrow \mathbb{C}$. Note that the primes p_{1}, \ldots, p_{n} need not be distinct. Define the inner-product of functions, write the Fourier basis functions, and show their orthonormality.
2. ($\mathbf{1 0}+\mathbf{1 0}$ points) Majority Functions. Let n be odd and $f(x):\{0,1\}^{n} \rightarrow\{+1,-1\}$ be the majority function. That is, if the majority of the bits in x is 0 , then $f(x)=+1$; otherwise $f(x)=-1$.
(a) Compute the Fourier coefficients of f when $n=3$.
(b) Let us define odd and even functions. For $x \in\{0,1\}^{n}$, define $\operatorname{flip}(x)$ to be the string where we flip every bit of x. For example flip $(0010)=1101$.
A function is odd if $f(\operatorname{flip}(x))=-f(x)$, for all $x \in\{0,1\}^{n}$. Note that the majority function defined above is an odd function.
A set $S \in\{0,1\}^{n}$ is even if the number of 1 s in S is even. For example, when $n=3$, the sets $S=000,011,101,110$ are even sets.
Prove that if f is an odd function then $\widehat{f}(S)=0$ for all even $S \in\{0,1\}^{n}$.
3. (20 points) Generalized BLR. Recall that a function $f:\{0,1\}^{n} \rightarrow\{+1,-1\}$ is linear if $f\left(0^{n}\right)=+1$ and $f(x+y)=f(x) \cdot f(y)$, for all $x, y \in\{0,1\}^{n}$. Consider the following generalization of the BLR algorithm to test whether a function f is close to linear of the function $-f$ is close to linear.

$$
\text { BLR }-\operatorname{Gen}^{f}:
$$

(a) Let $a, b, c \stackrel{\S}{\leftarrow}\{0,1\}^{n}$
(b) Let $w=f(a), x=f(b), y=f(c)$, and $z=f(a+b+c)$
(c) Return $(q \cdot x \cdot y==z)$

State and prove a theorem that intuitively proves that "the algorithm return trues with high probability" if and only if "the function f or $-f$ is close to a linear function."
4. (20 points) An Alternate Proof. Recall that the convolution of two function $f, g:\{0,1\}^{n} \rightarrow$ \mathbb{R} is defined as follows

$$
(f * g)(x):=\frac{1}{N} \sum_{y \in\{0,1\}^{n}} f(y) g(x-y)
$$

In this problem we shall develop a new technique to prove that $\widehat{(f * g)}=\widehat{f} \widehat{g}$.
(a) Compute the function $\left(\chi_{S} * \chi_{T}\right)$
(b) Note that the convolution operator is a bilinear operator. That is, we have $\left(\left(f_{1}+f_{2}\right) * g\right)=$ $\left(f_{1} * g\right)+\left(f_{2} * g\right)$ and $(c f) * g=c(f * g)$ from the definition of convolution. Similarly, we have $\left(f *\left(g_{1}+g_{2}\right)\right)=\left(f * g_{1}\right)+\left(f * g_{2}\right)$ and $f *(c g)=c(f * g)$.
Recall that we have $f=\sum_{S \in\{0,1\}^{n}} \widehat{f}(S) \chi_{S}$ and $g=\sum_{S \in\{0,1\}^{n}} \widehat{g}(S) \chi_{S}$. Prove that

$$
(f * g)=\sum_{S \in\{0,1\}^{n}} \widehat{f}(S) \widehat{g}(S) \chi_{S}
$$

5. $(5+15+5+5$ points) A Few Properties of Fourier Transformation. Let $f, g:\{0,1\}^{n} \rightarrow \mathbb{R}$ be two functions.
(a) Express $\widehat{(f g)}$ using the functions \widehat{f} and \widehat{g}. Here the function $(f g)$ defined as $(f g)(x)=$ $f(x) \cdot g(x)$, for all $x \in\{0,1\}^{n}$.
(b) Let $\max \{f, g\}$ is the function that satisfies $\max \{f, g\}(x)=\max \{f(x), g(x)\}$, for all $x \in\{0,1\}^{n}$. Suppose the range of f and g is $\{+1,-1\}$. Express $\boldsymbol{\operatorname { m a x } \{ f , g \}}$ is terms of \widehat{f} and \widehat{g}.
(c) Recall that if $f(x)=g(x-c)$ for some $c \in\{0,1\}^{n}$ then we have $\widehat{f}=\chi_{c} \widehat{g}$. Find a function $h:\{0,1\}^{n} \rightarrow \mathbb{R}$ such that $f=(h * g)$.
(d) For $1 \leqslant i<j \leqslant n$, define

$$
\operatorname{swap}_{i, j}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{i-1}, x_{j}, x_{i+1}, \ldots, x_{j-1}, x_{i}, x_{j+1}, \ldots, x_{n}\right)
$$

. Suppose $f(x)=g\left(\operatorname{swap}_{i, j}(x)\right)$, for all $x \in\{0,1\}^{n}$. Express \widehat{f} as a function of \widehat{g}.

