Homework 2 (150 points)

1. $(\mathbf{1 0}+\mathbf{1 0}+\mathbf{2 0}$ points) An Interesting Concentration. Let \mathbb{X} be the random variable over the sample space $\{1,2, \ldots\}$ such that $\mathbb{P}[\mathbb{X}=i]=2^{-i}$.
(a) Compute $\mu=\mathbb{E}[\mathbb{X}]$.
(b) Define $\mathbb{Y}=\mathbb{X}-\mu$. For $0 \leqslant h \leqslant \ln 2$, compute $\mathbb{E}[\exp (h \mathbb{Y})]$.
(c) Define $\mathbb{S}_{n}=\mathbb{Y}^{(1)}+\cdots+\mathbb{Y}^{(n)}$. Find the concentration bound for $\mathbb{P}\left[\mathbb{S}_{n} \geqslant t\right]$ using the technique of Chernoff bound.
2. $(\mathbf{1 0}+\mathbf{1 0}+\mathbf{2 0}$ points) Concentration of Sum of Poisson Distribution. Let \mathbb{X} be the random variable over the sample space $\{0,1, \ldots\}$ such that $\mathbb{P}[\mathbb{X}=i]=\exp (-\mu) \frac{\mu^{i}}{i!}$.
(a) Prove that $\mathbb{E}[\mathbb{X}]=\mu$.
(b) Define $\mathbb{Y}=\mathbb{X}-\mu$. For positive h, compute $\mathbb{E}[\exp (h \mathbb{Y})]$.
(c) Define $\mathbb{S}_{n}=\mathbb{Y}^{(1)}+\cdots+\mathbb{Y}^{(n)}$. Find the concentration bound for $\mathbb{P}\left[\mathbb{S}_{n} \geqslant t\right]$ using the technique of Chernoff bound. (You might find it useful to use a variable m such that $m=n \mu$ in the final bound.)
3. ($\mathbf{1 0}+\mathbf{1 0}$ points) Coin Tossing. Let \mathbb{X} be the uniform distribution over the sample space $\{0,1\}$.
(a) Let $S_{n}=\mathbb{X}^{(1)}+\cdots+\mathbb{X}^{(n)}$. Given a fixed values of m, how will you choose n such that $\mathbb{P}\left[\mathbb{S}_{n} \geqslant m\right] \leqslant(1-\varepsilon) ?$
(b) Use the above result to prove the concentration bound in Problem 1 part c.
4. (10 points) Concentration of Matrix rank. Let \mathbb{M} be a distribution over $n \times n$ matrices, where each element is selected uniformly and independently at random from the set Ω. State and prove a concentration bound for the rank of \mathbb{M} around its median or mean.
5. (40 points) Prefix-sum of Coins are Close to their respective Mean. Let \mathbb{X} be a distribution over $\{0,1\}$ such that $\mathbb{P}[\mathbb{X}=1]=p$ and $\mathbb{P}[\mathbb{X}=0]=(1-p)$. We consider the sum $S_{n}=\mathbb{X}^{(1)}+\cdots+\mathbb{X}^{(n)}$.

Chernoff-Hoeffding's bound states the following. It says that the probability of the sum S_{n} exceeding the expectation by t is very small. For example, we can say that

$$
\mathbb{P}\left[\mathbb{S}_{n} \geqslant p n+t\right] \leqslant \exp \left(-2 t^{2} / n\right)
$$

Intuitively, suppose we reject any outcome of the coins such that $\mathbb{S}_{n} \geqslant p n+t$. Then, this bound says that the probability of rejecting is at most $\exp \left(-2 t^{2} / n\right)$.

We want to claim that " \mathbb{S}_{n} never exceeded the expectation in any prefix." Let me elaborate. Suppose we reject any coin such that $\mathbb{S}_{i} \geqslant p \cdot i+t$ for any $i \in\{1, \ldots, n\}$. Formally, we reject if there exists $i \in\{1, \ldots, n\}$ such that $\mathbb{S}_{i} \geqslant p \cdot i+t$. Note that this rejection rule is more stringent than the previous rejection criterion. Our goal is to prove that this rejection probability is small. In particular, prove that

$$
\mathbb{P}\left[\exists i \in\{1, \ldots, n\} \text { s.t. } \mathbb{S}_{i} \geqslant p \cdot i+t\right] \leqslant \exp \left(-2 t^{2} / n\right)
$$

Isn't this amazing? This bound is identical to the Chernoff-Hoeffding bound!
6. (Extra Credit) New bounds for Hoeffding's Lemma. Surprise me with a new statement/proof of Hoeffding's Lemma!

