Homework 1 (120 points)

1. (20 points) Upper-bound on Entropy. Let $\Omega=\{1,2, \ldots, N\}$. Suppose \mathbb{X} is a random variable over the sample space Ω. For shorthand, let us use $x_{i}=\mathbb{P}[\mathbb{X}=i]$, for each $i \in \Omega$. The entropy of the random variable \mathbb{X} is defined to be the following function.

$$
H(\mathbb{X}):=\sum_{i \in \Omega}-p_{i} \log p_{i}
$$

Use Jensen's inequality on the function $f(x)=\log x$ to prove that the following inequality.

$$
H(\mathbb{X}) \leqslant \log N
$$

Equality holds if and only if we have $p_{1}=p_{2}=\cdots=p_{N}$.
2. (20 points) Log-sum Inequality. Let $\left\{a_{1}, \ldots, a_{N}\right\}$ and $\left\{b_{1}, \ldots, b_{N}\right\}$ be two sets of nonnegative real numbers. Use Jensen's inequality to prove the following inequality.

$$
\sum_{i=1}^{N} a_{i} \log \frac{a_{i}}{b_{i}} \geqslant a \log \frac{a}{b}
$$

where $a=\sum_{i=1}^{n} a_{i}$ and $b=\sum_{i=1}^{N} b_{i}$. Moreover, equality holds if and only if $\frac{a_{i}}{b_{i}}$ is equal for all $i \in\{1, \ldots, N\}$.
3. (20 points) Approximating Square-root. Our goal is to find a (meaningful and tight) upper-bound for $f(x)=(1-x)^{1 / 2}$ using a quadratic function of the form

$$
g(x)=1-\alpha x-\beta x^{2}
$$

Use the Lagrange form of the Taylor's remainder theorem on $f(x)$ around $x=0$ to obtain the function $g(x)$.
4. $\mathbf{(1 5 + 2 0}+\mathbf{5}$ points) Coupon Collector Problem. We shall show the following result. "The expected numbers of balls that we need to throw such that every bin has at least one ball is (roughly) $n \log n$."
(a) Let $i \in\{1, \ldots, n-1\}$. Suppose a few balls have already been thrown and we have the guarantee that there are exactly $(i-1)$ bins with >0 load. Let \mathbb{N}_{i} be the random variable over the sample space $\{1,2, \ldots\}$ that represents the minimum number of additional balls thrown so that (a total of) i bins have >0 load. For any $j \in\{1,2, \ldots\}$, prove that

$$
\mathbb{P}\left[\mathbb{N}_{i}=j\right]=\left(1-\frac{i-1}{n}\right)\left(\frac{i-1}{n}\right)^{j-1}
$$

(b) Prove that

$$
\mathbb{E}\left[\mathbb{N}_{i}\right]=\frac{n}{n-i+1}
$$

(c) Denote $\mathbb{N}=\mathbb{N}_{1}+\mathbb{N}_{2}+\cdots+\mathbb{N}_{n}$. So, the random variable \mathbb{N} represents the number of balls so that all bins have load >0. Prove that

$$
\mathbb{E}[\mathbb{N}]=n\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)
$$

This quantity is roughly $n \log n$. So, we have proven the bound on the coupon collector problem, which was our goal!
5. ($\mathbf{7}+\mathbf{7}+\mathbf{6}$ points) Poisson Distribution. We can also approach the Coupon Collector problem using the Poisson Approximation Theorem. To get us started towards that, let us consider the following problem.

Suppose we have m balls and n bins. Let \mathbb{X} be the Poisson distribution with mean $\mu=m / n$. That is, for all $i \in\{0,1,2, \ldots\}$, we have

$$
\mathbb{P}[\mathbb{X}=i]=\exp (-\mu) \frac{\mu^{i}}{i!}
$$

(a) Find the following probability

$$
\mathbb{P}[\mathbb{X} \geqslant 1]
$$

(b) Suppose $\left(\mathbb{X}^{(1)}, \ldots, X^{(n)}\right)$ be n independent samples of the random variable \mathbb{X}. Find the probability

$$
\mathbb{P}\left[\mathbb{X}^{(1)} \geqslant 1, \ldots, \mathbb{X}^{(n)} \geqslant 1\right]
$$

(c) Substituting $m=n \log n$, compute the probability

$$
\mathbb{P}\left[\mathbb{X}^{(1)} \geqslant 1, \ldots, \mathbb{X}^{(n)} \geqslant 1\right]
$$

It is left as an exercise to think on how to proceed from here to prove the bounds on the coupon collector problem.

