Homework 0
 (0 Points. Practice Problems only.)

1. Approximating Exponentiation. The goal of this problem is to approximate the function $\exp (-\varepsilon)$, where $0 \leqslant \varepsilon \leqslant 1$, using polynomials. We shall use the Lagrange form of the Taylor remainder theorem to perform this estimate.
Let us define the function $f(x)=\exp (-x)$. Verify that $f^{(i)}(x)=(-1)^{i} \exp (-x)$, where $i \geqslant 0$ and $f^{(i)}$ is the short-had for the i-th derivative of the function f. Let us set $a=0$.

Recall that the Taylor's series of the function f is defined as follows.

$$
f(\varepsilon)=\sum_{i \geqslant 0} f^{(i)}(0) \frac{\varepsilon^{i}}{i!}
$$

For $f(x)=\exp (-x)$, we have

$$
\exp (-\varepsilon)=1-\varepsilon+\frac{\varepsilon^{2}}{2!}-\frac{\varepsilon^{3}}{3!}+\cdots
$$

Recall that the Lagrange form of the Taylor's remainder theorem is defined as follows. For every ε and $k \geqslant 0$, there exists $\theta \in(0,1)$ such that

$$
f(\varepsilon)=\left(\sum_{i \geqslant 0} f^{(i)}(0) \frac{\varepsilon^{i}}{i!}\right)+f^{(k+1)}(\theta \varepsilon) \frac{\varepsilon^{k+1}}{(k+1)!}
$$

Therefore, for our choice of $f(x)=\exp (-x)$, we have

$$
\exp (-\varepsilon)=\overbrace{\left(1-\varepsilon+\frac{\varepsilon^{2}}{2!}-\frac{\varepsilon^{3}}{3!}+\cdots+(-1)^{k} \frac{\varepsilon^{k}}{k!}\right)}^{\text {Approximation: } p_{k}(\varepsilon)}+\overbrace{(-1)^{k+1} \exp (-\theta \varepsilon) \frac{\varepsilon^{k+1}}{(k+1)!}}^{\text {Remainder: } R_{\varepsilon, k}}
$$

(a) Prove that for even k, the remainder $R_{\varepsilon, k}$ is negative. Therefore, you have proved that $\exp (-\varepsilon) \leqslant p_{k}(\varepsilon)$.
(b) Prove that for odd k, the remainder $R_{\varepsilon, k}$ is positive. Therefore, you have proved that $\exp (-\varepsilon) \geqslant p_{k}(\varepsilon)$.
(c) Prove that the magnitude of the remainder $\left|R_{\varepsilon, k}\right| \leqslant \frac{\varepsilon^{k+1}}{(k+1)!}$. This proves a bound on the quality of the approximation of $\exp (-\varepsilon)$ by the polynomial $p_{k}(\varepsilon)$.
(Remark: Students are encouraged to plot $\exp (-x)$ and the polynomials $p_{k}(x)$ to understand the bounds proved in this problem.)
2. Approximating Logarithm. The goal of this problem is to approximate the function $\ln (1-\varepsilon)$, where $0 \leqslant \varepsilon<1$, using polynomials.
Let us define $f(x)=\ln (1-x)$. Verify that $f^{(i)}(x)=-\frac{(i-1)!}{(1-x)^{i}}$, for $i \geqslant 1$.
Verify that, for $f(x)=\ln (1-x)$, the Taylor series gives us

$$
\ln (1-\varepsilon)=-\varepsilon-\frac{\varepsilon^{2}}{2}-\frac{\varepsilon^{3}}{3}-\cdots
$$

Verify that, for $f(x)=\ln (1-x)$, the Lagrange form of the Taylor's remainder theorem gives us the following. For every ε, k, there exists $\theta \in(0,1)$ such that

$$
\ln (1-\varepsilon)=\overbrace{\left(-\varepsilon-\frac{\varepsilon^{2}}{2}-\frac{\varepsilon^{3}}{3}-\cdots-\frac{\varepsilon^{k}}{k}\right)}^{\text {Approximation: } p_{k}(\varepsilon)}-\frac{1}{(1-\theta \varepsilon)^{k+1}} \frac{\varepsilon^{k+1}}{(k+1)}
$$

(a) Prove that $\ln (1-\varepsilon) \leqslant p_{k}(\varepsilon)$, for all $k \geqslant 0$.
(b) How large is the magnitude of the remainder as a function of k and ε ?
(c) Prove that $\ln (1-\varepsilon) \geqslant p_{k}(\varepsilon)-\frac{\varepsilon^{k}}{k}$, for all $0 \leqslant \varepsilon \leqslant 1 / 2$.
(Hint: Use the fact that $\ln (1-\varepsilon)=-\varepsilon-\frac{\varepsilon^{2}}{2}-\frac{\varepsilon^{3}}{3}-\cdots$, for $0 \leqslant \varepsilon<1$.)
(Remark: Again, students are encouraged to plot $\ln (1-x)$ and the polynomials $p_{k}(x)$ and the polynomials $p_{k}(x)-\frac{x^{k}}{k}$ to understand the bounds proved in this problem.)
3. AM-GM Inequality. The goal of this problem is to prove the AM-GM inequality using the Jensen's inequality. Let us recall the Jensen's inequality. A function f is convex in the range $[a, b]$ if $f^{(2)}$ is positive in the range $[a, b]$. Jensen's inequality states that if f is convex in the range $[a, b]$, then

$$
\frac{f(a)+f(b)}{2} \geqslant f\left(\frac{a+b}{2}\right)
$$

Equality holds if and only if $a=b$.
A function f is concave in the range $[a, b]$ if $f^{(2)}$ is negative in the range $[a, b]$. Jensen's inequality states that if f is concave in the range $[a, b]$, then

$$
\frac{f(a)+f(b)}{2} \leqslant f\left(\frac{a+b}{2}\right)
$$

Equality holds if and only if $a=b$.
Let us recall the AM-GM inequality. For positive a, b, we have

$$
\frac{a+b}{2} \geqslant \sqrt{a b}
$$

Equality holds if and only if $a=b$.
Prove the AM-GM inequality using Jensen's inequality using $f(x)=\ln (x)$ (recall that $\ln (x)$ is concave in $(0, \infty))$.
4. Cauchy-Schwarz Inequality. The goal of this problem is to prove the Cauchy-Schwarz inequality using the Jensen's inequality. Let us recall the Cauchy-Schwarz inequality. For positive $a_{1}, a_{2}, b_{1}, b_{2}$, we have

$$
\left(a_{1} b_{1}+a_{2} b_{2}\right) \leqslant\left(a_{1}^{2}+a_{2}^{2}\right)^{1 / 2}\left(b_{1}^{2}+b_{2}^{2}\right)^{1 / 2}
$$

Equality holds if and only if $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}$.
(a) Let us consider an intermediate inequality. For positive A, B, we have

$$
(1+\sqrt{A B}) \leqslant(1+A)^{1 / 2}(1+B)^{1 / 2}
$$

Equality holds if and only if $A=B$.
Use this intermediate inequality to prove the Cauchy-Schwarz inequality.
(b) Prove that the function $f(x)=\ln (1+\exp (x))$ is a convex function.
(c) Prove the intermediate inequality using the Jensen's inequality on the function $f(x)=$ $\ln (1+\exp (x))$.
5. Young's Inequality. The goal of this problem is to prove the Young's inequality using the (general form) of the Jensen's inequality. One can interpret Young's inequality as a generalization of the AM-GM inequality.

Let us recall the general form of the Jensen's inequality. Suppose f is a convex function in the range $[a, b]$. For any positive α, β such that $\alpha+\beta=1$, we have

$$
\alpha f(a)+\beta f(b) \geqslant f(\alpha a+\beta b)
$$

Equality holds if and only if $a=b$.
Note that if we choose $\alpha=\beta=\frac{1}{2}$, we get the particular form of Jensen's inequality as used in the previous two problems.

Let us now recall the Young's inequality. Let p, q be Hölder conjugates, i.e., positive reals numbers such that $\frac{1}{p}+\frac{1}{q}=1$. For positive a, b, we have

$$
a b \leqslant \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

Equality holds if and only if $a^{p}=b^{q}$.
Prove Young's inequality using the general form of the Jensen's inequality on the function $f(x)=\ln (x)$.
(Remark. Note that for $p=q=2$, Young's inequality is identical to the AM-GM inequality.)
6. Hölder's Inequality. The goal of the problem is to prove the Hölder's inequality using the (general form) of the Jensen's inequality.

Let us recall Hölder's inequality. Suppose p, q are Hölder conjugates. For positive $a_{1}, a_{2}, b_{1}, b_{2}$, we have

$$
\left(a_{1} b_{1}+a_{2} b_{2}\right) \leqslant\left(a_{1}^{p}+a_{2}^{p}\right)^{1 / p}\left(b_{1}^{q}+b_{2}^{q}\right)^{1 / q}
$$

(a) Consider the following intermediate inequality. For positive A, B, we have

$$
\left(1+A^{1 / p} B^{1 / q}\right) \leqslant(1+A)^{1 / p}(1+B)^{1 / q}
$$

Prove the Hölder's inequality using the intermediate inequality.
(b) Prove the intermediate inequality using the general form of the Jensen's inequality on the function $f(x)=\ln (1+\exp (x))$.
(c) What is the characterization of achieving equality in the Hölder's inequality?

