
Name: Hemanta K. Maji

Homework 0
(0 Points. Practice Problems only.)

1. Approximating Exponentiation. The goal of this problem is to approximate the function
exp(−ε), where 0 6 ε 6 1, using polynomials. We shall use the Lagrange form of the Taylor
remainder theorem to perform this estimate.

Let us define the function f(x) = exp(−x). Verify that f (i)(x) = (−1)i exp(−x), where i > 0
and f (i) is the short-had for the i-th derivative of the function f . Let us set a = 0.

Recall that the Taylor’s series of the function f is defined as follows.

f(ε) =
∑
i>0

f (i)(0)
εi

i!

For f(x) = exp(−x), we have

exp(−ε) = 1− ε+ ε2

2!
− ε3

3!
+· · ·

Recall that the Lagrange form of the Taylor’s remainder theorem is defined as follows. For
every ε and k > 0, there exists θ ∈ (0, 1) such that

f(ε) =

∑
i>0

f (i)(0)
εi

i!

+ f (k+1)(θε)
εk+1

(k + 1)!

Therefore, for our choice of f(x) = exp(−x), we have

exp(−ε) =

Approximation: pk(ε)︷ ︸︸ ︷(
1− ε+ ε2

2!
− ε3

3!
+· · ·+ (−1)k ε

k

k!

)
+

Remainder: Rε,k︷ ︸︸ ︷
(−1)k+1 exp(−θε) εk+1

(k + 1)!

(a) Prove that for even k, the remainder Rε,k is negative. Therefore, you have proved that
exp(−ε) 6 pk(ε).

(b) Prove that for odd k, the remainder Rε,k is positive. Therefore, you have proved that
exp(−ε) > pk(ε).

(c) Prove that the magnitude of the remainder
∣∣Rε,k

∣∣ 6 εk+1

(k+1)! . This proves a bound on the
quality of the approximation of exp(−ε) by the polynomial pk(ε).

(Remark: Students are encouraged to plot exp(−x) and the polynomials pk(x) to understand the bounds
proved in this problem.)
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2. Approximating Logarithm. The goal of this problem is to approximate the function
ln(1− ε), where 0 6 ε < 1, using polynomials.

Let us define f(x) = ln(1− x). Verify that f (i)(x) = − (i−1)!
(1−x)i

, for i > 1.

Verify that, for f(x) = ln(1− x), the Taylor series gives us

ln(1− ε) = −ε− ε2

2
− ε3

3
−· · ·

Verify that, for f(x) = ln(1− x), the Lagrange form of the Taylor’s remainder theorem gives
us the following. For every ε, k, there exists θ ∈ (0, 1) such that

ln(1− ε) =

Approximation: pk(ε)︷ ︸︸ ︷(
−ε− ε2

2
− ε3

3
−· · · − εk

k

)
− 1

(1− θε)k+1

εk+1

(k + 1)

(a) Prove that ln(1− ε) 6 pk(ε), for all k > 0.

(b) How large is the magnitude of the remainder as a function of k and ε?

(c) Prove that ln(1− ε) > pk(ε)− εk

k , for all 0 6 ε 6 1/2.
(Hint: Use the fact that ln(1− ε) = −ε− ε2

2
− ε3

3
−· · ·, for 0 6 ε < 1.)

(Remark: Again, students are encouraged to plot ln(1− x) and the polynomials pk(x) and the polynomials
pk(x)− xk

k
to understand the bounds proved in this problem.)
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3. AM-GM Inequality. The goal of this problem is to prove the AM-GM inequality using the
Jensen’s inequality. Let us recall the Jensen’s inequality. A function f is convex in the range
[a, b] if f (2) is positive in the range [a, b]. Jensen’s inequality states that if f is convex in the
range [a, b], then

f(a) + f(b)

2
> f

(
a+ b

2

)
Equality holds if and only if a = b.

A function f is concave in the range [a, b] if f (2) is negative in the range [a, b]. Jensen’s
inequality states that if f is concave in the range [a, b], then

f(a) + f(b)

2
6 f

(
a+ b

2

)
Equality holds if and only if a = b.

Let us recall the AM-GM inequality. For positive a, b, we have

a+ b

2
>
√
ab

Equality holds if and only if a = b.

Prove the AM-GM inequality using Jensen’s inequality using f(x) = ln(x) (recall that ln(x)
is concave in (0,∞)).
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4. Cauchy-Schwarz Inequality. The goal of this problem is to prove the Cauchy-Schwarz
inequality using the Jensen’s inequality. Let us recall the Cauchy-Schwarz inequality. For
positive a1, a2, b1, b2, we have

(a1b1 + a2b2) 6
(
a21 + a22

)1/2 (
b21 + b22

)1/2
Equality holds if and only if a1

b1
= a2

b2
.

(a) Let us consider an intermediate inequality. For positive A,B, we have(
1 +
√
AB
)
6 (1 +A)1/2 (1 +B)1/2

Equality holds if and only if A = B.
Use this intermediate inequality to prove the Cauchy-Schwarz inequality.

(b) Prove that the function f(x) = ln
(
1 + exp(x)

)
is a convex function.

(c) Prove the intermediate inequality using the Jensen’s inequality on the function f(x) =
ln
(
1 + exp(x)

)
.
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5. Young’s Inequality. The goal of this problem is to prove the Young’s inequality using
the (general form) of the Jensen’s inequality. One can interpret Young’s inequality as a
generalization of the AM-GM inequality.

Let us recall the general form of the Jensen’s inequality. Suppose f is a convex function in
the range [a, b]. For any positive α, β such that α+ β = 1, we have

αf(a) + βf(b) > f (αa+ βb)

Equality holds if and only if a = b.

Note that if we choose α = β = 1
2 , we get the particular form of Jensen’s inequality as used

in the previous two problems.

Let us now recall the Young’s inequality. Let p, q be Hölder conjugates, i.e., positive reals
numbers such that 1

p + 1
q = 1. For positive a, b, we have

ab 6
ap

p
+
bq

q

Equality holds if and only if ap = bq.

Prove Young’s inequality using the general form of the Jensen’s inequality on the function
f(x) = ln(x).

(Remark. Note that for p = q = 2, Young’s inequality is identical to the AM-GM inequality.)
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6. Hölder’s Inequality. The goal of the problem is to prove the Hölder’s inequality using the
(general form) of the Jensen’s inequality.

Let us recall Hölder’s inequality. Suppose p, q are Hölder conjugates. For positive a1, a2, b1, b2,
we have

(a1b1 + a2b2) 6
(
ap1 + ap2

)1/p (
bq1 + bq2

)1/q
(a) Consider the following intermediate inequality. For positive A,B, we have(

1 +A1/pB1/q
)
6 (1 +A)1/p (1 +B)1/q

Prove the Hölder’s inequality using the intermediate inequality.

(b) Prove the intermediate inequality using the general form of the Jensen’s inequality on
the function f(x) = ln(1 + exp(x)).

(c) What is the characterization of achieving equality in the Hölder’s inequality?
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