


Norm

@ For p > 1, let us define the p-norm of a function

1/p

1fl,={ 5 3 1l

x€{0,1}"
® We can use Jensen's inequality to prove that ||f|| , <[|f]|, for

any function f, when p < g, and equality holds if and only if
|f| is a constant function
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Basic Observations

@ We can show, using Jensen's inequality, that || Tp(f)Hp <Ifl,
(Intuition: because the noise operator smoothens the function)
e Thatis, “T,(-) contracts f"

@ By monotonicity of norm, we can conclude that

I, <) for o <
@ So, we summarize the above dlscussion using the following
picture
170N, < I,
N
17,

o But how does ||f]| , relate to || Tp(f)Hq?

Fourier Analysis



Hypercontractivity Theorem

Theorem (Hypercontractivity Theorem)

For1 < p < g we have

ITo(A)lg <11,

forall0 < p</(p—1)/(q—1).

@ Intuitively, the hypercontractivity theorem states that even the
g-th norm of T,(f) is smaller than the p-th norm of f, if q is
slightly larger than p.

o The tightest inequality is obtained for p = \/(p —1)/(q — 1)
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Special Case: g = 2

@ Suppose p =1+ and g = 2, then the hypercontractivity
theorem states that

IToz <Ufl14s
for p=+/8

e By Parseval’s identity, we have
2 ~
ITAll= > FIrsy?
Se{o,1}"
@ So, we conclude the following result
> RSP <L
Se{0,1}"

@ Comment: Proving the hypercontractivity theorem for
1 < p < g = 2 suffices to prove the general hypercontractivity
theorem presented above
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Application: KKL Lemma

e KKL stands for Kahn-Kalai-Linial

@ Suppose f: {0,1}" — {-1,0,+1}

© Then, we have |f||, =P[f # 0]*/?

@ By direct application of the hypercontractivity theorem, we
can conclude that

Lemma (KKL Lemma)

Y RS < PIf £ 0]/OH)
Se{0,1}"

@ Intuition: The left-hand side is dominated by the Fourier
coefficients associated with “small-weight S." So, the
inequality states that the “total mass associated with the
Fourier coefficients of small-weight S” is much smaller than the
probability of “encountering f.” Equivalently, a “small support
" has low “total mass” on the Fourier coefficients of small S.

Fourier Analysis



Application: Parities of Large Sets is Unpredictable |

@ Suppose A C {0,1}" and 14, is the indicator function of the
set A

e For S € {0,1}", define

1
Bs = Al ZXS(X)

xEA

Intuitively, the quantity Ss represents “how random the set A
appears’ when we perform the test ys. Smaller s implies
more random A appears.

@ We can perform the following manipulation
1 1 N N —
Bs =g D xs(x) = Al > L ()xs(x) = |Z|<1“}’X5> = Wl{A}(S)

xEA x€{0,1}"
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Application: Parities of Large Sets is Unpredictable |l

@ Our goal is to study the following quantity

oo B

5€{0,1}":|S|=k

Note that this quantity is the cumulative measure of
randomness of all xs test such that|S| = k

@ Now, we can use the expression of (s to obtain
N? _
>, B= a2 > 1Sy
5€{0,1}": |S|=k Al 5€{0,1}": |S|=k

@ The KKL Lemma provides us the perfect tool to upper-bound
the right hand side. For any 6 € [0, 1], we have

ST RS2 < YD 0IR(S)2 < Pf £ 0/
5e{0,1}":|S|=k Se{o 1}"
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Application: Parities of Large Sets is Unpredictable Il

@ So, we obtain

2 N2 " 2
>, B= i > Lw(s)
5e{0,1}":|S|=k Al 5¢{0,1}":|S|=k
N2 1

_ N1 AN
_yAF ok \N

}2/(14-6)

25

N2 ) g N\ 1
‘(|A|> 'M‘(W) ok

N\? 1
< [ — .
() =
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Application: Parities of Large Sets is Unpredictable |V

@ Now, our objective is to find ¢ € [0, 1] that minimizes the right
hand side expression. This part is left as an exercise.

@ At the end, for this value of §, we shall have

<Z>_1 S /3§=0<1—f’7>k,

S€{0,1}":|S|=k

where |A| = 29. That is, the average bias is exponentially
small. This bound is also (essentially) tight.
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