
Lecture 25: Hypercontractivity and Parity over
Large Sets
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Norm

For p > 1, let us define the p-norm of a function

‖f ‖p =

 1
N

∑
x∈{0,1}n

∣∣f (x)∣∣p


1/p

We can use Jensen’s inequality to prove that ‖f ‖p 6‖f ‖q for
any function f , when p < q, and equality holds if and only if
|f | is a constant function
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Basic Observations

We can show, using Jensen’s inequality, that
∥∥Tρ(f )∥∥p 6‖f ‖p

(Intuition: because the noise operator smoothens the function)
That is, “Tρ(·) contracts f ”
By monotonicity of norm, we can conclude that∥∥Tρ(f )∥∥p 6

∥∥Tρ(f )∥∥q, for p 6 q

So, we summarize the above discussion using the following
picture ∥∥Tρ(f )∥∥p 6 ‖f ‖p6∥∥Tρ(f )∥∥q
But how does ‖f ‖p relate to

∥∥Tρ(f )∥∥q?
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Hypercontractivity Theorem

Theorem (Hypercontractivity Theorem)

For 1 6 p 6 q we have ∥∥Tρ(f )∥∥q 6‖f ‖p ,

for all 0 6 ρ 6
√
(p − 1)/(q − 1).

Intuitively, the hypercontractivity theorem states that even the
q-th norm of Tρ(f ) is smaller than the p-th norm of f , if q is
slightly larger than p.

The tightest inequality is obtained for ρ =
√
(p − 1)/(q − 1)
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Special Case: q = 2

Suppose p = 1+ δ and q = 2, then the hypercontractivity
theorem states that ∥∥Tρ(f )∥∥2 6‖f ‖1+δ ,

for ρ =
√
δ

By Parseval’s identity, we have∥∥Tρ(f )∥∥2
2 =

∑
S∈{0,1}n

δ|S|f̂ (S)2

So, we conclude the following result∑
S∈{0,1}n

δ|S|f̂ (S)2 6‖f ‖21+δ

Comment: Proving the hypercontractivity theorem for
1 6 p 6 q = 2 suffices to prove the general hypercontractivity
theorem presented above
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Application: KKL Lemma

KKL stands for Kahn-Kalai-Linial
Suppose f : {0, 1}n → {−1, 0,+1}
Then, we have ‖f ‖p = P [f 6= 0]1/p

By direct application of the hypercontractivity theorem, we
can conclude that

Lemma (KKL Lemma)∑
S∈{0,1}n

δ|S|f̂ (S)2 6 P [f 6= 0]2/(1+δ)

Intuition: The left-hand side is dominated by the Fourier
coefficients associated with “small-weight S .” So, the
inequality states that the “total mass associated with the
Fourier coefficients of small-weight S” is much smaller than the
probability of “encountering f .” Equivalently, a “small support
f ” has low “total mass” on the Fourier coefficients of small S .
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Application: Parities of Large Sets is Unpredictable I

Suppose A ⊆ {0, 1}n and 1{A} is the indicator function of the
set A

For S ∈ {0, 1}n, define

βS =
1
|A|
∑
x∈A

χS(x)

Intuitively, the quantity βS represents “how random the set A
appears” when we perform the test χS . Smaller βS implies
more random A appears.
We can perform the following manipulation

βS =
1
|S |
∑
x∈A

χS(x) =
1
|A|

∑
x∈{0,1}n

1{A}(x)χS(x) =
N

|A|
〈
1{A}, χS

〉
=

N

|A| 1̂{A}(S)
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Application: Parities of Large Sets is Unpredictable II

Our goal is to study the following quantity∑
S∈{0,1}n : |S|=k

β2
S

Note that this quantity is the cumulative measure of
randomness of all χS test such that |S | = k

Now, we can use the expression of βS to obtain

∑
S∈{0,1}n : |S |=k

β2
S =

N2

|A|2
∑

S∈{0,1}n : |S |=k

1̂{A}(S)2

The KKL Lemma provides us the perfect tool to upper-bound
the right hand side. For any δ ∈ [0, 1], we have∑
S∈{0,1}n : |S |=k

δk f̂ (S)2 6
∑

S∈{0,1}n
δ|S|f̂ (S)2 6 P [f 6= 0]2/(1+δ)
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Application: Parities of Large Sets is Unpredictable III

So, we obtain∑
S∈{0,1}n : |S|=k

β2
S =

N2

|A|2
∑

S∈{0,1}n : |S|=k

1̂{A}(S)2

6
N2

|A|2
· 1
δk
· P
[
1{A} 6= 0

]2/(1+δ)
=

N2

|A|2
· 1
δk
·
(
|A|
N

)2/(1+δ)

=

(
N

|A|

)2
(
1− 1

1+δ

)
· 1
δk

=

(
N

|A|

) 2δ
1+δ

· 1
δk

6

(
N

|A|

)2δ

· 1
δk

Fourier Analysis



Application: Parities of Large Sets is Unpredictable IV

Now, our objective is to find δ ∈ [0, 1] that minimizes the right
hand side expression. This part is left as an exercise.

At the end, for this value of δ, we shall have(
n
k

)−1 ∑
S∈{0,1}n : |S |=k

β2
S = O

(
1− a

n

)k

,

where |A| = 2a. That is, the average bias is exponentially
small. This bound is also (essentially) tight.
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