
Lecture 23: Few Applications (BLR Test, LHL)
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BLR Linearity Testing I

We shall consider the following definition of linear functions

Definition (Linear Function)

Let f : {0, 1}n → {+1,−1} be a boolean function. If
f (x) · f (y) = f (x + y), for all x , y ∈ {0, 1}n, then the function f is
a linear function.

Note that χS is a linear function for all S ∈ {0, 1}n. In fact,
{χ0, . . . , χN−1} is the set of all linear functions.

Suppose a function f is provided to us as an oracle. We are
interested in testing whether it is close-to some linear function.
That it, does there exists S such that f and χS agree on a
large number of inputs, i.e., f (x) = χS(x) for a large fraction
of x ∈ {0, 1}n
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BLR Linearity Testing II

Blum–Luby–Rubinfeld provided an algorithm to correctly test
this property using only two queries to the f -oracle. This
algorithm is known as the BLR linearity testing algorithm

Here is the pseudo-code of the algorithm

BLRf :

Pick random x , y ∈ {0, 1}n and query f to obtain u = f (x),
v = f (y), and w = f (x + y)

Output true if u · v == w

So, the algorithm is simple. Let us analyze the performance of
this algorithm

We want to claim that “if the algorithm returns true with high
probability then the function f agrees with some χS with high
probability”
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BLR Linearity Testing III

We make the following claim

Lemma
The probability that our algorithm outputs true is

1+
∑

S∈{0,1}n f̂ (S)
3

2

Proof Outline.
Note that the algorithm says true when
f (x) · f (y) == f (x + y). That is, f (x) · f (y) · f (x + y) = 1,
because the range of f is {+1,−1}.
And, similarly, our algorithm says false when
f (x) · f (y) · f (x + y) = −1.
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BLR Linearity Testing IV

Therefore, we can conclude that

1
N2

∑
x,y∈{0,1}n

f (x)f (y)f (x + y) = p − (1− p),

where p is the probability that our algorithm says true
So, to prove the lemma, it suffices to prove that

1
N2

∑
x,y∈{0,1}n

f (x)f (y)f (x + y) =
∑

S∈{0,1}n

f̂ (S)3

Fourier Analysis



BLR Linearity Testing V

Let us prove this

1
N2

∑
x,y∈{0,1}n

f (x)f (y)f (x + y) =
1
N

∑
z∈{0,1}n

 1
N

∑
x∈{0,1}n

f (x)f (z − x)

 f (z)

=
1
N

∑
z∈{0,1}n

(f ∗ f )(z) · f (z)

= 〈f ∗ f , f 〉

=
∑

S∈{0,1}n
(̂f ∗ f )(S) · f̂ (S)

=
∑

S∈{0,1}n
f̂ (S)3
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BLR Linearity Testing VI

Okay, back to our main proof now. Suppose p is the
probability that our algorithm outputs true. If p > 1− ε, then,
from the lemma above, we have∑

S∈{0,1}n
f̂ (S)3 > 1− 2ε

Note that Parseval’s identity on f implies that∑
S∈{0,1}n

f̂ (S)2 = 〈f , f 〉 = 1,

because the range of f is {+1,−1}
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BLR Linearity Testing VII

So, we are given two guarantees∑
S∈{0,1}n

f̂ (S)2 = 1

∑
S∈{0,1}n

f̂ (S)3 > 1− 2ε

We need to prove that maxS∈{0,1}n f̂ (S) is close to 1

We prove the following result

Lemma

If
∑

S∈{0,1}n f̂ (S)
2 = 1 and

∑
S∈{0,1}n f̂ (S)

3 > 1− 2ε then we

have maxS∈{0,1}n f̂ (S) > 1− 2ε.
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BLR Linearity Testing VIII

Proof Outline.

max
S∈{0,1}n

f̂ (S) =

(
max

S∈{0,1}n
f̂ (S)

) ∑
S∈{0,1}n

f̂ (S)2


>

∑
S∈{0,1}n

f̂ (S)3

> 1− 2ε

So, let us recall what we have proven. If the algorithm outputs
true with probability > (1− ε), then there exists S such that
f̂ (S) > 1− 2ε.

Recall that if q is the probability that f and χS agree then we
have 〈f , χS〉 = q − (1− q). So, q > 1− ε, because
〈f , χS〉 = f̂ (S).
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BLR Linearity Testing IX

Thus, we conclude that if the algorithm outputs true with
probability p > (1− ε) then f agrees with some χS with
probability q > p > (1− ε).

Fourier Analysis



Left-over Hash Lemma I

We need to introduce the definition of a family of universal
hash functions.

Definition (Universal Hash Function Family)

Let H = {h1, . . . , hα} be a set of {0, 1}n → {0, 1}m functions such
that for any distinct x , x ′ ∈ {0, 1}n we have

P
[
h(x) = h(x ′) : h

$←H
]
6

1
2m

Recall that X has min-entropy k if P [X = x ] 6 2−k for any x
in the sample space

Fourier Analysis



Left-over Hash Lemma II

Left-over Hash Lemma (LHL) states the following. The
statistical distance between the distributions (H(X),H) and
(U,H) is small, where U is a uniform distribution over {0, 1}m
and H is the uniform distribution over H. Formally, it states
the following

Lemma (LHL)

Let H be a uniform distribution over H, a universal hash function
family {0, 1}n → {0, 1}m, and X is a random variable over {0, 1}n.
Then, the following holds

SD
(
(H(X),H), (U,H)

)
6

1
2

√
2m

2H∞(X)

Proof Outline.
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Left-over Hash Lemma III

We begin with some simplification

SD
(
(H(X),H), (U,H)

)
= E

[
SD
(
h(X),U

)
: h ∼ H

]
6 E

M2
√ ∑

S∈{0,1}m
ĥ(X)(S)2 − ĥ(X)(0)2 : h ∼ H



6
M

2

√√√√√E

 ∑
S∈{0,1}m

ĥ(X)(S)2 − 1
M2 : h ∼ H

, Jensen’s

6
M

2

√√√√√E

 ∑
S∈{0,1}m

ĥ(X)(S)2 : h ∼ H

− 1
M2

=
M

2

√
E
[〈
h(X), h(X)

〉
: h ∼ H

]
− 1

M2 , Parseval’s

=
1
2

√
ME

[
col(h(X)) : h ∼ H

]
− 1
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Left-over Hash Lemma IV

So, we need to estimate E
[
col(h(X)) : h ∼ H

]
. Note that this

is equivalent to the probability that we sample two
independent samples x ∼ X and x ′ ∼ X and it turns out that
h(x) = h(x ′), for h ∼ H. That is, the following expression

E
[
1{h(x)=h(x′)} : x ∼ X, x ′ ∼ X, h ∼ H

]
Note that if x = x ′, then we shall definitely have h(x) = h(x ′)
irrespective of the value of h.
If x 6= x ′ then the probability that h(x) = h(x ′) is 6 1

M , for a
random h ∼ H
To use these two observations, we proceed formally as follows.
We write

1{h(x)=h(x′)} = 1{x=x′} + 1{(x 6=x′) ∧ (h(x)=h(x′))}

So, we have

E
[
1{h(x)=h(x′)}

]
= E

[
1{x=x′}

]
+ E

[
1{(x 6=x′) ∧ (h(x)=h(x′))}

]
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Left-over Hash Lemma V

Let p be the collision probability of the random variable X. We
know that p 6 1

K , where k is the min-entropy of X. So, we
have E

[
1{x=x′}

]
= p.

And, by universal hash function family guarantee of H, we have

E
[
1{(x 6=x′) ∧ (h(x)=h(x′))}

]
6 (1− p)

1
M

So, we have

E
[
col(h(X)) : h ∼ H

]
6 p +

(1− p)

M
<

1
K

+
1
M

Now, going back to our original inequality

SD
(
(H(X),H), (U,H)

)
6

1
2

√
ME

[
col(h(X)) : h ∼ H

]
− 1

<
1
2

√
M

K
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