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@ We shall consider the following definition of linear functions

Definition (Linear Function)

Let f: {0,1}" — {+1,—1} be a boolean function. If
f(x)-f(y) = f(x+y), forall x,y € {0,1}", then the function f is
a linear function.

e Note that xs is a linear function for all S € {0,1}". In fact,
{X0,---,Xn—1} is the set of all linear functions.

@ Suppose a function f is provided to us as an oracle. We are
interested in testing whether it is close-to some linear function.
That it, does there exists S such that f and x5 agree on a
large number of inputs, i.e., f(x) = xs(x) for a large fraction
of x € {0,1}"
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@ Blum—Luby—Rubinfeld provided an algorithm to correctly test
this property using only two queries to the f-oracle. This
algorithm is known as the BLR linearity testing algorithm

@ Here is the pseudo-code of the algorithm

BLR':

o Pick random x,y € {0,1}" and query f to obtain u = f(x),
v="F(y),and w=f(x+y)

o Output trueifu-v==w

@ So, the algorithm is simple. Let us analyze the performance of
this algorithm

@ We want to claim that “if the algorithm returns true with high
probability then the function f agrees with some xs with high
probability”
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@ We make the following claim

The probability that our algorithm outputs true is

1+ > sco1)” f(S)?

2

Proof Outline.
o Note that the algorithm says true when
f(x)-f(y) == f(x+y). Thatis, f(x)-f(y) f(x+y)=1,
because the range of f is {+1, —1}.
o And, similarly, our algorithm says false when
f(x)-f(y) - f(x+y)=-1L
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o Therefore, we can conclude that

Y Aty =p— (1),

x,y€{0,1}"

where p is the probability that our algorithm says true
e So, to prove the lemma, it suffices to prove that

% S W)= S RS

x,y€{0,1}" 5e€{0,1}"
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e Let us prove this

D G y) = v ( > (x)f(z—x))f(z)
x,y€{0,1}" x€{0,1}"
Z (f % F)(2) - f(2)
ern
- Z (FF)(S) - 7(5)
se{o,1}"
= > f(s)’
sef{o,1}n
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@ Okay, back to our main proof now. Suppose p is the
probability that our algorithm outputs true. If p > 1 — ¢, then,
from the lemma above, we have

o OAS)Pz1-2

Se{0,1}"

@ Note that Parseval’s identity on f implies that

YOS =(ff)=1,

Se{o,1}"

because the range of f is {+1,—1}
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@ So, we are given two guarantees
> OF(S)P=1
Se{o,1}"
S OAS)Pz1-2

Se{0,1}"

We need to prove that maxsecq 13 ?(S) is close to 1

@ We prove the following result

/fzse{ql}n ?(5)2 =1 and ZSE{O,].}" ?(5)3 > 1 — 2¢ then we
have maxgsc o137 f(S) > 1 — 2e.
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Proof Outline.

2oy 2 2 c\2
sef0.1)” f(5) = (55{1&)1(}" f(5)> 2, f(8)

Se{0,1}"
> Y f(s)
Se{0,1}"
>1-2¢

@ So, let us recall what we have proven. If the algorithm outputs
true with probability > (1 — ¢), then there exists S such that
F(S)>1—2e.

@ Recall that if g is the probability that £ and xs agree then we
have (f,xs) = q—(1—¢q). So, g > 1 — ¢, because

Fourier Analysis



BLR Linearity Testing IX

@ Thus, we conclude that if the algorithm outputs true with
probability p > (1 — ) then f agrees with some xs with
probability g > p > (1 —¢).
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@ We need to introduce the definition of a family of universal
hash functions.

Definition (Universal Hash Function Family)

Let H = {hy,..., ha} be aset of {0,1}" — {0,1}" functions such
that for any distinct x, x’ € {0,1}" we have

P [h(x) = h(x'): h ] < o

o Recall that X has min-entropy k if P[X = x] < 27 for any x
in the sample space
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o Left-over Hash Lemma (LHL) states the following. The
statistical distance between the distributions (H(X), H) and
(U, H) is small, where U is a uniform distribution over {0,1}"
and H is the uniform distribution over H. Formally, it states
the following

Lemma (LHL)

Let H be a uniform distribution over H, a universal hash function
family {0,1}" — {0,1}", and X is a random variable over {0,1}".
Then, the following holds

i o
SD ((H(X), H), (U, H)) < 2@

Proof Outline.
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o We begin with some simplification

SD ((H(X), H), (U, H)) = E [SD (h(X),U) : h~ ]HI]

{ Z )2 — h(X)(0 )2:h~]HI]

se{o,1}m
< % E Z @(5) - W h~H Jensen
[ Sefo,1}m
M — 1
<5 |E > hX)(S):h~H ~
[ Sefo,1}m
M 1
7\/ h(X), h(X)): h ~ H] — 3750 Parseval
1
5\/ E [col(h(X)): h~H] — 1
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o So, we need to estimate E [col(h(X)): h ~ H]. Note that this
is equivalent to the probability that we sample two
independent samples x ~ X and x’ ~ X and it turns out that
h(x) = h(x), for h ~ H. That is, the following expression

E [l{h(x):h(x')} tx XX~ X h o~ H}

o Note that if x = x/, then we shall definitely have h(x) = h(x")
irrespective of the value of h.

o If x # X then the probability that h(x) = h(x') is < 4, for a
random h ~ H

e To use these two observations, we proceed formally as follows.
We write

Lineo=nx)y = Tix=xry T L) A (h(x)=h(x))}

So, we have

E {1{h(x):h(x'>}} =E {1{x:x'}} +E [1{(x¢x'> A (h(x)=h(x")}
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o Let p be the collision probability of the random variable X. We
know that p < £, where k is the min-entropy of X. So, we

have E |:1{><=X’}:| =p.
e And, by universal hash function family guarantee of #H, we have

1
£ [I{WX’) A (h(x):h(x’))}} <(@-py;

e So, we have

E [col(h(X)): h~H]| < p+

e Now, going back to our original inequality

SD ((HI(X), H), (U, )) < 3 /ME [col ((X)): h ~H] — 1
1 /M

<2Vk
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