Lecture 23: Few Applications (BLR Test, LHL)

BLR Linearity Testing I

- We shall consider the following definition of linear functions

Definition (Linear Function)

Let $f:\{0,1\}^{n} \rightarrow\{+1,-1\}$ be a boolean function. If $f(x) \cdot f(y)=f(x+y)$, for all $x, y \in\{0,1\}^{n}$, then the function f is a linear function.

- Note that χ_{S} is a linear function for all $S \in\{0,1\}^{n}$. In fact, $\left\{\chi_{0}, \ldots, \chi_{N-1}\right\}$ is the set of all linear functions.
- Suppose a function f is provided to us as an oracle. We are interested in testing whether it is close-to some linear function. That it, does there exists S such that f and χs agree on a large number of inputs, i.e., $f(x)=\chi_{s}(x)$ for a large fraction of $x \in\{0,1\}^{n}$

BLR Linearity Testing II

- Blum-Luby-Rubinfeld provided an algorithm to correctly test this property using only two queries to the f-oracle. This algorithm is known as the BLR linearity testing algorithm
- Here is the pseudo-code of the algorithm BLR ${ }^{f}$:
- Pick random $x, y \in\{0,1\}^{n}$ and query f to obtain $u=f(x)$, $v=f(y)$, and $w=f(x+y)$
- Output true if $u \cdot v==w$
- So, the algorithm is simple. Let us analyze the performance of this algorithm
- We want to claim that "if the algorithm returns true with high probability then the function f agrees with some χ_{S} with high probability"

BLR Linearity Testing III

- We make the following claim

Lemma

The probability that our algorithm outputs true is

$$
\frac{1+\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{3}}{2}
$$

Proof Outline.

- Note that the algorithm says true when $f(x) \cdot f(y)==f(x+y)$. That is, $f(x) \cdot f(y) \cdot f(x+y)=1$, because the range of f is $\{+1,-1\}$.
- And, similarly, our algorithm says false when $f(x) \cdot f(y) \cdot f(x+y)=-1$.

BLR Linearity Testing IV

- Therefore, we can conclude that

$$
\frac{1}{N^{2}} \sum_{x, y \in\{0,1\}^{n}} f(x) f(y) f(x+y)=p-(1-p),
$$

where p is the probability that our algorithm says true

- So, to prove the lemma, it suffices to prove that

$$
\frac{1}{N^{2}} \sum_{x, y \in\{0,1\}^{n}} f(x) f(y) f(x+y)=\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{3}
$$

BLR Linearity Testing V

- Let us prove this

$$
\begin{aligned}
\frac{1}{N^{2}} \sum_{x, y \in\{0,1\}^{n}} f(x) f(y) f(x+y) & =\frac{1}{N} \sum_{z \in\{0,1\}^{n}}\left(\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x) f(z-x)\right) f(z) \\
& =\frac{1}{N} \sum_{z \in\{0,1\}^{n}}(f * f)(z) \cdot f(z) \\
& =\langle f * f, f\rangle \\
& =\sum_{S \in\{0,1\}^{n}} \widehat{(f * f)}(S) \cdot \widehat{f}(S) \\
& =\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{3}
\end{aligned}
$$

BLR Linearity Testing VI

- Okay, back to our main proof now. Suppose p is the probability that our algorithm outputs true. If $p \geqslant 1-\varepsilon$, then, from the lemma above, we have

$$
\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{3} \geqslant 1-2 \varepsilon
$$

- Note that Parseval's identity on f implies that

$$
\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{2}=\langle f, f\rangle=1
$$

because the range of f is $\{+1,-1\}$

BLR Linearity Testing VII

- So, we are given two guarantees

$$
\begin{aligned}
& \sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{2}=1 \\
& \sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{3} \geqslant 1-2 \varepsilon
\end{aligned}
$$

We need to prove that $\max _{S \in\{0,1\}^{n}} \widehat{f}(S)$ is close to 1

- We prove the following result

Lemma

If $\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{2}=1$ and $\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{3} \geqslant 1-2 \varepsilon$ then we have $\max _{S \in\{0,1\}^{n}} \widehat{f}(S) \geqslant 1-2 \varepsilon$.

BLR Linearity Testing VIII

Proof Outline.

$$
\begin{aligned}
\max _{S \in\{0,1\}^{n}} \widehat{f}(S) & =\left(\max _{S \in\{0,1\}^{n}} \widehat{f}(S)\right)\left(\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{2}\right) \\
& \geqslant \sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{3} \\
& \geqslant 1-2 \varepsilon
\end{aligned}
$$

- So, let us recall what we have proven. If the algorithm outputs true with probability $\geqslant(1-\varepsilon)$, then there exists S such that $\widehat{f}(S) \geqslant 1-2 \varepsilon$.
- Recall that if q is the probability that f and χ_{s} agree then we have $\langle f, \chi s\rangle=q-(1-q)$. So, $q \geqslant 1-\varepsilon$, because $\left\langle f, \chi_{s}\right\rangle=\widehat{f}(S)$.

BLR Linearity Testing IX

- Thus, we conclude that if the algorithm outputs true with probability $p \geqslant(1-\varepsilon)$ then f agrees with some χs with probability $q \geqslant p \geqslant(1-\varepsilon)$.
- We need to introduce the definition of a family of universal hash functions.

Definition (Universal Hash Function Family)

Let $\mathcal{H}=\left\{h_{1}, \ldots, h_{\alpha}\right\}$ be a set of $\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ functions such that for any distinct $x, x^{\prime} \in\{0,1\}^{n}$ we have

$$
\mathbb{P}\left[h(x)=h\left(x^{\prime}\right): h \leftarrow^{\S} \mathcal{H}\right] \leqslant \frac{1}{2^{m}}
$$

- Recall that \mathbb{X} has min-entropy k if $\mathbb{P}[\mathbb{X}=x] \leqslant 2^{-k}$ for any x in the sample space
- Left-over Hash Lemma (LHL) states the following. The statistical distance between the distributions $(\mathbb{H}(\mathbb{X}), \mathbb{H})$ and (\mathbb{U}, \mathbb{H}) is small, where \mathbb{U} is a uniform distribution over $\{0,1\}^{m}$ and \mathbb{H} is the uniform distribution over \mathcal{H}. Formally, it states the following

Lemma (LHL)

Let \mathbb{H} be a uniform distribution over \mathcal{H}, a universal hash function family $\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, and \mathbb{X} is a random variable over $\{0,1\}^{n}$. Then, the following holds

$$
\mathrm{SD}((\mathbb{H}(\mathbb{X}), \mathbb{H}),(\mathbb{U}, \mathbb{H})) \leqslant \frac{1}{2} \sqrt{\frac{2^{m}}{2^{\mathrm{H}_{\infty}(\mathbb{X})}}}
$$

Proof Outline.

Left-over Hash Lemma III

- We begin with some simplification

$$
\begin{aligned}
\operatorname{SD}((\mathbb{H}(\mathbb{X}), \mathbb{H}),(\mathbb{U}, \mathbb{H})) & =\mathbb{E}[\operatorname{SD}(h(\mathbb{X}), \mathbb{U}): h \sim \mathbb{H}] \\
& \leqslant \mathbb{E}\left[\frac{M}{2} \sqrt{\left.\sum_{S \in\{0,1\}^{m}} \widehat{h(\mathbb{X})}(S)^{2}-\widehat{h(\mathbb{X})(0)^{2}}: h \sim \mathbb{H}\right]}\right. \\
& \leqslant \frac{M}{2} \sqrt{\mathbb{E}\left[\sum_{s \in\{0,1\}^{m}} \widehat{h(\mathbb{X})}(S)^{2}-\frac{1}{M^{2}}: h \sim \mathbb{H}\right]}, \\
& \leqslant \frac{M}{2} \sqrt{\mathbb{E}\left[\sum_{S \in\{0,1\}^{m}} \widehat{h(\mathbb{X})}(S)^{2}: h \sim \mathbb{H}\right]-\frac{1}{M^{2}}} \\
& =\frac{M}{2} \sqrt{\mathbb{E}[\langle h(\mathbb{X}), h(\mathbb{X})\rangle: h \sim \mathbb{H}]-\frac{1}{M^{2}}}, \\
& =\frac{1}{2} \sqrt{M \mathbb{E}[\operatorname{col}(h(\mathbb{X})): h \sim \mathbb{H}]-1}
\end{aligned}
$$

- So, we need to estimate $\mathbb{E}[\operatorname{col}(h(\mathbb{X})): h \sim \mathbb{H}]$. Note that this is equivalent to the probability that we sample two independent samples $x \sim \mathbb{X}$ and $x^{\prime} \sim \mathbb{X}$ and it turns out that $h(x)=h\left(x^{\prime}\right)$, for $h \sim \mathbb{H}$. That is, the following expression

$$
\mathbb{E}\left[\mathbf{1}_{\left\{h(x)=h\left(x^{\prime}\right)\right\}}: x \sim \mathbb{X}, x^{\prime} \sim \mathbb{X}, h \sim \mathbb{H}\right]
$$

- Note that if $x=x^{\prime}$, then we shall definitely have $h(x)=h\left(x^{\prime}\right)$ irrespective of the value of h.
- If $x \neq x^{\prime}$ then the probability that $h(x)=h\left(x^{\prime}\right)$ is $\leqslant \frac{1}{M}$, for a random $h \sim \mathbb{H}$
- To use these two observations, we proceed formally as follows. We write

$$
\mathbf{1}_{\left\{h(x)=h\left(x^{\prime}\right)\right\}}=\mathbf{1}_{\left\{x=x^{\prime}\right\}}+\mathbf{1}_{\left\{\left(x \neq x^{\prime}\right) \wedge\left(h(x)=h\left(x^{\prime}\right)\right)\right\}}
$$

So, we have

$$
\left.\mathbb{E}\left[\mathbf{1}_{\left\{h(x)=h\left(x^{\prime}\right)\right\}}\right]=\mathbb{E}\left[\mathbf{1}_{\left\{x=x^{\prime}\right\}}\right]+\mathbb{E}\left[\mathbf{1}_{\left\{\left(x \neq x^{\prime}\right)\right.} \wedge\left(h(x)=h\left(x^{\prime}\right)\right)\right\}\right]_{\overline{\underline{\underline{1}}}}
$$

Left-over Hash Lemma V

- Let p be the collision probability of the random variable \mathbb{X}. We know that $p \leqslant \frac{1}{K}$, where k is the min-entropy of \mathbb{X}. So, we have $\mathbb{E}\left[\mathbf{1}_{\left\{x=x^{\prime}\right\}}\right]=p$.
- And, by universal hash function family guarantee of \mathcal{H}, we have

$$
\mathbb{E}\left[\mathbf{1}_{\left\{\left(x \neq x^{\prime}\right) \wedge\left(h(x)=h\left(x^{\prime}\right)\right)\right\}}\right] \leqslant(1-p) \frac{1}{M}
$$

- So, we have

$$
\mathbb{E}[\operatorname{col}(h(\mathbb{X})): h \sim \mathbb{H}] \leqslant p+\frac{(1-p)}{M}<\frac{1}{K}+\frac{1}{M}
$$

- Now, going back to our original inequality

$$
\begin{aligned}
\mathrm{SD}((\mathbb{H}(\mathbb{X}), \mathbb{H}),(\mathbb{U}, \mathbb{H})) & \leqslant \frac{1}{2} \sqrt{M \mathbb{E}[\operatorname{col}(h(\mathbb{X})): h \sim \mathbb{H}]-1} \\
& <\frac{1}{2} \sqrt{\frac{M}{K}}
\end{aligned}
$$

