Lecture 23: Few Applications (BLR Test, LHL)
We shall consider the following definition of linear functions.

Definition (Linear Function)

Let $f : \{0, 1\}^n \to \{+1, -1\}$ be a boolean function. If

$$f(x) \cdot f(y) = f(x + y),$$

for all $x, y \in \{0, 1\}^n$, then the function f is a linear function.

Note that χ_S is a linear function for all $S \in \{0, 1\}^n$. In fact, \(\{\chi_0, \ldots, \chi_{N-1}\}\) is the set of all linear functions.

Suppose a function f is provided to us as an oracle. We are interested in testing whether it is close-to some linear function. That is, does there exists S such that f and χ_S agree on a large number of inputs, i.e., $f(x) = \chi_S(x)$ for a large fraction of $x \in \{0, 1\}^n$.
Blum–Luby–Rubinfeld provided an algorithm to correctly test this property using only two queries to the f-oracle. This algorithm is known as the BLR linearity testing algorithm.

Here is the pseudo-code of the algorithm:

\[
\text{BLR}^f: \quad \\
\text{Pick random } x, y \in \{0, 1\}^n \text{ and query } f \text{ to obtain } u = f(x), v = f(y), \text{ and } w = f(x + y) \\]
\[
\text{Output true if } u \cdot v = w
\]

So, the algorithm is simple. Let us analyze the performance of this algorithm.

We want to claim that “if the algorithm returns true with high probability then the function f agrees with some χ_S with high probability”.
We make the following claim

Lemma

The probability that our algorithm outputs true is

\[
1 + \sum_{S \in \{0,1\}^n} \hat{f}(S)^3 \frac{3}{2}
\]

Proof Outline.

- Note that the algorithm says true when \(f(x) \cdot f(y) = f(x + y) \). That is, \(f(x) \cdot f(y) \cdot f(x + y) = 1 \), because the range of \(f \) is \(\{+1, -1\} \).
- And, similarly, our algorithm says false when \(f(x) \cdot f(y) \cdot f(x + y) = -1 \).
Therefore, we can conclude that

$$\frac{1}{N^2} \sum_{x, y \in \{0,1\}^n} f(x)f(y)f(x + y) = p - (1 - p),$$

where p is the probability that our algorithm says true.

So, to prove the lemma, it suffices to prove that

$$\frac{1}{N^2} \sum_{x, y \in \{0,1\}^n} f(x)f(y)f(x + y) = \sum_{S \in \{0,1\}^n} \hat{f}(S)^3$$

Fourier Analysis
Let us prove this

\[
\frac{1}{N^2} \sum_{x,y \in \{0,1\}^n} f(x)f(y)f(x+y) = \frac{1}{N} \sum_{z \in \{0,1\}^n} \left(\frac{1}{N} \sum_{x \in \{0,1\}^n} f(x)f(z-x) \right) f(z)
\]

\[
= \frac{1}{N} \sum_{z \in \{0,1\}^n} (f \ast f)(z) \cdot f(z)
\]

\[
= \langle f \ast f, f \rangle
\]

\[
= \sum_{S \in \{0,1\}^n} (\hat{f} \ast \hat{f})(S) \cdot \hat{f}(S)
\]

\[
= \sum_{S \in \{0,1\}^n} \hat{f}(S)^3
\]
Okay, back to our main proof now. Suppose p is the probability that our algorithm outputs true. If $p \geq 1 - \varepsilon$, then, from the lemma above, we have

$$\sum_{S \in \{0,1\}^n} \hat{f}(S)^3 \geq 1 - 2\varepsilon$$

Note that Parseval’s identity on f implies that

$$\sum_{S \in \{0,1\}^n} \hat{f}(S)^2 = \langle f, f \rangle = 1,$$

because the range of f is $\{+1, -1\}$.
So, we are given two guarantees

\[\sum_{S \in \{0,1\}^n} \hat{f}(S)^2 = 1 \]
\[\sum_{S \in \{0,1\}^n} \hat{f}(S)^3 \geq 1 - 2\varepsilon \]

We need to prove that \(\max_{S \in \{0,1\}^n} \hat{f}(S) \) is close to 1

We prove the following result

Lemma

If \(\sum_{S \in \{0,1\}^n} \hat{f}(S)^2 = 1 \) and \(\sum_{S \in \{0,1\}^n} \hat{f}(S)^3 \geq 1 - 2\varepsilon \) then we have \(\max_{S \in \{0,1\}^n} \hat{f}(S) \geq 1 - 2\varepsilon \).
Proof Outline.

\[
\max_{S \in \{0,1\}^n} \hat{f}(S) = \left(\max_{S \in \{0,1\}^n} \hat{f}(S) \right) \left(\sum_{S \in \{0,1\}^n} \hat{f}(S)^2 \right) \\
\geq \sum_{S \in \{0,1\}^n} \hat{f}(S)^3 \\
\geq 1 - 2\varepsilon
\]

- So, let us recall what we have proven. If the algorithm outputs true with probability \(\geq (1 - \varepsilon) \), then there exists \(S \) such that \(\hat{f}(S) \geq 1 - 2\varepsilon \).
- Recall that if \(q \) is the probability that \(f \) and \(\chi_S \) agree then we have \(\langle f, \chi_S \rangle = q - (1 - q) \). So, \(q \geq 1 - \varepsilon \), because \(\langle f, \chi_S \rangle = \hat{f}(S) \).
Thus, we conclude that if the algorithm outputs true with probability $p \geq (1 - \varepsilon)$ then f agrees with some χ_S with probability $q \geq p \geq (1 - \varepsilon)$.

Fourier Analysis
We need to introduce the definition of a family of universal hash functions.

Definition (Universal Hash Function Family)

Let \(\mathcal{H} = \{ h_1, \ldots, h_\alpha \} \) be a set of \(\{0, 1\}^n \rightarrow \{0, 1\}^m \) functions such that for any distinct \(x, x' \in \{0, 1\}^n \) we have

\[
P \left[h(x) = h(x') : h \leftarrow \mathcal{H} \right] \leq \frac{1}{2^m}
\]

Recall that \(X \) has min-entropy \(k \) if \(P [X = x] \leq 2^{-k} \) for any \(x \) in the sample space.
Left-over Hash Lemma (LHL) states the following. The statistical distance between the distributions \((\mathbb{H}(X), \mathbb{H})\) and \((U, \mathbb{H})\) is small, where \(U\) is a uniform distribution over \(\{0, 1\}^m\) and \(\mathbb{H}\) is the uniform distribution over \(\mathcal{H}\). Formally, it states the following

Lemma (LHL)

Let \(\mathbb{H}\) be a uniform distribution over \(\mathcal{H}\), a universal hash function family \(\{0, 1\}^n \rightarrow \{0, 1\}^m\), and \(X\) is a random variable over \(\{0, 1\}^n\). Then, the following holds

\[
\text{SD}\left((\mathbb{H}(X), \mathbb{H}), (U, \mathbb{H})\right) \leq \frac{1}{2} \sqrt{\frac{2^m}{2^{H_\infty}(X)}}
\]

Proof Outline.

Fourier Analysis
We begin with some simplification

$$SD \left((\mathbb{H}(X), \mathbb{H}), (U, \mathbb{H}) \right) = \mathbb{E} \left[SD \left(h(X), U \right) : h \sim \mathbb{H} \right]$$

$$\leq \mathbb{E} \left[\frac{M}{2} \sqrt{\sum_{S \in \{0,1\}^m} m \hat{h}(X)(S)^2 - \hat{h}(X)(0)^2 : h \sim \mathbb{H}} \right]$$

$$\leq \frac{M}{2} \sqrt{\mathbb{E} \left[\sum_{S \in \{0,1\}^m} m \hat{h}(X)(S)^2 - \frac{1}{M^2} : h \sim \mathbb{H} \right]}$$

$$\leq \frac{M}{2} \sqrt{\mathbb{E} \left[\sum_{S \in \{0,1\}^m} m \hat{h}(X)(S)^2 : h \sim \mathbb{H} \right]} - \frac{1}{M^2}$$

$$= \frac{M}{2} \sqrt{\mathbb{E} \left[\langle h(X), h(X) \rangle : h \sim \mathbb{H} \right]} - \frac{1}{M^2}$$

$$= \frac{M}{2} \sqrt{\mathbb{E} \left[\text{col}(h(X)) : h \sim \mathbb{H} \right]} - 1$$
So, we need to estimate $\mathbb{E} \left[\text{col}(h(X)) : h \sim H \right]$. Note that this is equivalent to the probability that we sample two independent samples $x \sim X$ and $x' \sim X$ and it turns out that $h(x) = h(x')$, for $h \sim H$. That is, the following expression

$$
\mathbb{E} \left[\mathbf{1}_{\{h(x)=h(x')\}} : x \sim X, x' \sim X, h \sim H \right]
$$

Note that if $x = x'$, then we shall definitely have $h(x) = h(x')$ irrespective of the value of h.

If $x \neq x'$ then the probability that $h(x) = h(x')$ is $\leq \frac{1}{M}$, for a random $h \sim H$.

To use these two observations, we proceed formally as follows. We write

$$
\mathbf{1}_{\{h(x)=h(x')\}} = \mathbf{1}_{\{x=x'\}} + \mathbf{1}_{\{(x\neq x') \land (h(x)=h(x'))\}}
$$

So, we have

$$
\mathbb{E} \left[\mathbf{1}_{\{h(x)=h(x')\}} \right] = \mathbb{E} \left[\mathbf{1}_{\{x=x'\}} \right] + \mathbb{E} \left[\mathbf{1}_{\{(x\neq x') \land (h(x)=h(x'))\}} \right]
$$
Let p be the collision probability of the random variable X. We know that $p \leq \frac{1}{K}$, where k is the min-entropy of X. So, we have $\mathbb{E}\left[\mathbf{1}_{\{x=x'\}}\right] = p$.

And, by universal hash function family guarantee of \mathcal{H}, we have

$$\mathbb{E}\left[\mathbf{1}_{\{(x\neq x') \land (h(x)\neq h(x'))\}}\right] \leq (1 - p) \frac{1}{M}$$

So, we have

$$\mathbb{E}\left[\text{col}(h(X)) : h \sim \mathcal{H}\right] \leq p + \frac{(1 - p)}{M} < \frac{1}{K} + \frac{1}{M}$$

Now, going back to our original inequality

$$\text{SD} \left(\mathcal{H}(X), \mathcal{H}, \mathcal{U}, \mathcal{H}\right) \leq \frac{1}{2} \sqrt{M \mathbb{E}\left[\text{col}(h(X)) : h \sim \mathcal{H}\right]} - 1$$

$$< \frac{1}{2} \sqrt{\frac{M}{K}}$$