Lecture 22: Few Applications

Fourier Analysis

・ロト ・日子・ ・ ヨア・

3 x 3

Close to the Uniform Distribution I

- We shall represent random variables over the sample space $\{0,1\}^n$ as real-valued functions over $\{0,1\}^n$
- Our objective in this part of the lecture is to obtain a technique to demonstrate "close-ness" to the uniform distribution
- Recall that the uniform distribution over the sample space $\{0,1\}^n$ is the constant function \mathbb{U} such that $\mathbb{U}(x) = \frac{1}{N}$, for all $x \in \{0,1\}^n$. We had seen that the Fourier coefficients of this function is the delta function

$$\widehat{\mathbb{U}}(x) = \begin{cases} \frac{1}{N}, & \text{if } x = 0\\ 0, & \text{otherwise.} \end{cases}$$

• Suppose $\mathbb A$ is a probability distribution over the same sample space $\{0,1\}^n$

▲御→ ▲注→ ▲注→

 \bullet We are interested in measuring how close the distribution $\mathbb A$ is to the uniform distribution $\mathbb U$

Definition (Statistical Distance)

The statistical distance between two probability distributions \mathbb{A} and \mathbb{B} over the same discrete sample space Ω is represented by

$$\mathrm{SD}\left(\mathbb{A},\mathbb{B}
ight) := rac{1}{2}\sum_{x\in\Omega} \left|\mathbb{A}(x) - \mathbb{B}(x)
ight|$$

Intuitively, if ${\rm SD}\,(\mathbb{A},\mathbb{B})$ is small then the two distributions are close to each other.

・ 同 ト ・ ヨ ト ・ ヨ ト

 \bullet We can upper-bound the ${\rm SD}\left(\mathbb{A},\mathbb{B}\right)$ using their Fourier Coefficients

Lemma

$$\mathrm{SD}\left(\mathbb{A},\mathbb{B}\right) \leqslant \frac{N}{2} \sqrt{\sum_{S \neq 0} \left(\widehat{\mathbb{A}}(S) - \widehat{\mathbb{B}}(S)\right)^2}$$

・ロト ・ ア・ ・ ヨト ・ ヨト

Close to the Uniform Distribution IV

Proof Outline.

$$2SD (\mathbb{A}, \mathbb{B}) = \sum_{x \in \{0,1\}^n} |\mathbb{A}(x) - \mathbb{B}(x)|, \qquad \text{By Definition}$$
$$\leq \sqrt{N} \sqrt{\sum_{x \in \{0,1\}^n} (\mathbb{A}(x) - \mathbb{B}(x))^2}, \qquad \text{Cauchy-Schwarz}$$
$$= N \sqrt{\frac{1}{N} \sum_{x \in \{0,1\}^n} (\mathbb{A} - \mathbb{B})(x)^2}$$
$$= N \sqrt{\sum_{S \in \{0,1\}^n} (\widehat{\mathbb{A} - \mathbb{B}})(S)^2}, \qquad \text{Parseval's Identity}$$
$$= N \sqrt{\sum_{S \neq 0} (\widehat{\mathbb{A} - \mathbb{B}})(S)^2}, \qquad \widehat{\mathbb{A}}(0) = \widehat{\mathbb{B}}(0) = \frac{1}{N}$$
$$= N \sqrt{\sum_{S \neq 0} (\mathbb{A}(\widehat{S}) - \mathbb{B}(S))^2}, \qquad \text{Linearity of Fourier}$$

・ロト ・部ト ・ヨト ・ヨト

э

- Intuitively, if two functions have Fourier coefficients that are close, then the functions are close as well
- In particular, we get the following corollary

★課▶ ★注▶ ★注▶

• Small-bias distributions find a significant applications in derandomization techniques for algorithms

Definition (Small-Bias Distribution)

A distribution \mathbb{A} has ε -bias if $\widehat{\mathbb{A}}(S) \leq \varepsilon/N$, for all $S \in \{0,1\}^n$ such that $S \neq 0$

Think: State and prove that a random function
 f: {0,1}ⁿ → {+1,-1} has a small bias with very high
 probability

★課▶ ★注▶ ★注▶

XOR Lemma I

- The XOR lemma states that if two distributions A and B are XORed, then the resultant distribution A ⊕ B is "very-small-bias" if both A and B were "small-biased"
- Note that $\mathbb{A} \oplus \mathbb{B}$ is the function $N(\mathbb{A} * \mathbb{B})$. So, we have $\widehat{(\mathbb{A} \oplus \mathbb{B})}(S) = N\widehat{\mathbb{A}}(S)\widehat{\mathbb{B}}(S)$.
- Suppose \mathbb{A} is ε -biased and \mathbb{B} is δ -biased. Then, the distribution $(\mathbb{A} \oplus \mathbb{B})$ is $(\varepsilon \delta)$ -biased, because $N(\widehat{\mathbb{A} \oplus \mathbb{B}})(S) = (N\widehat{\mathbb{A}}(S)) \cdot (N\widehat{\mathbb{B}}(S))$
- Let $k\mathbb{A}$ represent the distribution

$$\overbrace{\mathbb{A}\oplus\cdots\oplus\mathbb{A}}^{k\text{-times}}$$

 Note that if A is ε-biased then, inductively, we can show that the distribution kA is ε^k-biased

XOR Lemma II

• So, we can conclude that

$$SD(\mathbb{U}, k\mathbb{A}) \leq \frac{N}{2} \sqrt{\sum_{S \neq 0} \widehat{(k\mathbb{A})}(S)^2}$$
$$= \frac{1}{2} \sqrt{\sum_{S \neq 0} \left(N\widehat{(k\mathbb{A})}(S)\right)^2}$$
$$\leq \frac{1}{2} \sqrt{\sum_{S \neq 0} (\varepsilon^k)^2}$$
$$< \frac{\varepsilon^k \sqrt{N}}{2}$$

Fourier Analysis

・ロト ・四ト ・ヨト ・ヨト

æ

• Using this above observation, we can conclude the following lemma

Lemma (XOR-Lemma)

If \mathbb{A} is an ε -biased distribution and $k \ge \frac{(n/2) + \lg(1/2\delta)}{\lg(1/\varepsilon)}$, then we have $\operatorname{SD}(\mathbb{U}, k\mathbb{A}) \le \delta$.

Extraction from any Min-Entropy Source via Masking with a Small-bias Distribution

Lemma

Let \mathbb{S} be an ε -bias distribution and \mathbb{M} be a min-entropy source with $H_{\infty}(\mathbb{M}) \ge k$ over the sample space $\{0,1\}^n$. Then, we have $SD(\mathbb{U}, \mathbb{S} \oplus \mathbb{M}) \le \frac{\varepsilon}{2} \sqrt{\frac{N}{K}}$.

Proof Outline.

$$\begin{split} \operatorname{SD}\left(\mathbb{U}, \mathbb{S} \oplus \mathbb{M}\right) &\leqslant \frac{N}{2} \sqrt{\sum_{S \neq 0} (\widehat{\mathbb{S} \oplus \mathbb{M}})(S)^2} = \frac{N}{2} \sqrt{\sum_{S \neq 0} N^2 \widehat{\mathbb{S}}(S)^2 \widehat{\mathbb{M}}(S)^2} \\ &\leqslant \frac{N}{2} \sqrt{\sum_{S \neq 0} \varepsilon^2 \widehat{\mathbb{M}}(S)^2} = \frac{N\varepsilon}{2} \sqrt{\sum_{S \neq 0} \widehat{\mathbb{M}}(S)^2} \\ &< \frac{N\varepsilon}{2} \sqrt{\frac{1}{NK}} = \frac{\varepsilon}{2} \sqrt{\frac{N}{K}} \end{split}$$

Fourier Analysis