
Lecture 22: Few Applications
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Close to the Uniform Distribution I

We shall represent random variables over the sample space
{0, 1}n as real-valued functions over {0, 1}n

Our objective in this part of the lecture is to obtain a technique
to demonstrate “close-ness” to the uniform distribution

Recall that the uniform distribution over the sample space
{0, 1}n is the constant function U such that U(x) = 1

N , for all
x ∈ {0, 1}n. We had seen that the Fourier coefficients of this
function is the delta function

Û(x) =

{
1
N , if x = 0
0, otherwise.

Suppose A is a probability distribution over the same sample
space {0, 1}n
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Close to the Uniform Distribution II

We are interested in measuring how close the distribution A is
to the uniform distribution U

Definition (Statistical Distance)

The statistical distance between two probability distributions A and
B over the same discrete sample space Ω is represented by

SD (A,B) :=
1
2

∑
x∈Ω

∣∣A(x)− B(x)
∣∣

Intuitively, if SD (A,B) is small then the two distributions are
close to each other.
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Close to the Uniform Distribution III

We can upper-bound the SD (A,B) using their Fourier
Coefficients

Lemma

SD (A,B) 6
N

2

√∑
S 6=0

(
Â(S)− B̂(S)

)2
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Close to the Uniform Distribution IV

Proof Outline.

2SD (A,B) =
∑

x∈{0,1}n

∣∣A(x)− B(x)
∣∣ , By Definition

6
√
N

√ ∑
x∈{0,1}n

(
A(x)− B(x)

)2
, Cauchy-Schwarz

= N

√
1
N

∑
x∈{0,1}n

(A− B) (x)2

= N

√ ∑
S∈{0,1}n

̂(A− B)(S)2, Parseval’s Identity

= N

√∑
S 6=0

̂(A− B)(S)2, Â(0) = B̂(0) = 1
N

= N

√∑
S 6=0

̂(
A(S)− B(S)

)2
, Linearity of Fourier
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Close to the Uniform Distribution V

Intuitively, if two functions have Fourier coefficients that are
close, then the functions are close as well

In particular, we get the following corollary

Corollary

SD (A,U) 6
N

2

√∑
S 6=0

Â(S)2
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Small-Bias Distributions

Small-bias distributions find a significant applications in
derandomization techniques for algorithms

Definition (Small-Bias Distribution)

A distribution A has ε-bias if Â(S) 6 ε/N, for all S ∈ {0, 1}n such
that S 6= 0

Think: State and prove that a random function
f : {0, 1}n → {+1,−1} has a small bias with very high
probability
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XOR Lemma I

The XOR lemma states that if two distributions A and B are
XORed, then the resultant distribution A⊕ B is
“very-small-bias” if both A and B were “small-biased”

Note that A⊕ B is the function N(A ∗ B). So, we have
̂(A⊕ B)(S) = NÂ(S)B̂(S).

Suppose A is ε-biased and B is δ-biased. Then, the
distribution (A⊕ B) is (εδ)-biased, because
N ̂(A⊕ B)(S) =

(
NÂ(S)

)
·
(
NB̂(S)

)
Let kA represent the distribution

k-times︷ ︸︸ ︷
A⊕· · · ⊕ A

Note that if A is ε-biased then, inductively, we can show that
the distribution kA is εk -biased
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XOR Lemma II

So, we can conclude that

SD (U, kA) 6
N

2

√∑
S 6=0

(̂kA)(S)2

=
1
2

√∑
S 6=0

(
N (̂kA)(S)

)2

6
1
2

√∑
S 6=0

(
εk
)2

<
εk
√
N

2
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XOR Lemma III

Using this above observation, we can conclude the following
lemma

Lemma (XOR-Lemma)

If A is an ε-biased distribution and k > (n/2)+lg(1/2δ)
lg(1/ε) , then we have

SD (U, kA) 6 δ.

Fourier Analysis



Extraction from any Min-Entropy Source via Masking with a
Small-bias Distribution

Lemma
Let S be an ε-bias distribution and M be a min-entropy source with
H∞(M) > k over the sample space {0, 1}n. Then, we have

SD (U, S⊕M) 6 ε
2

√
N
K .

Proof Outline.

SD (U, S⊕M) 6
N

2

√∑
S 6=0

̂(S⊕M)(S)2 =
N

2

√∑
S 6=0

N2Ŝ(S)2M̂(S)2

6
N

2

√∑
S 6=0

ε2M̂(S)2 =
Nε

2

√∑
S 6=0

M̂(S)2

<
Nε

2

√
1

NK
=
ε

2

√
N

K
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