Lecture 21: Discrete Fourier Analysis on the

 Boolean Hypercube (Convolution)
Linear shift of a Function I

- Let f, g be functions such that $f(x)=g(x-c)$, for some fixed $c \in\{0,1\}^{n}$
- Then, the following result holds

Lemma

$$
\widehat{f}=\chi_{c} \widehat{g}
$$

What this result means is that $\widehat{f}(S)=\chi_{c}(S) \widehat{g}(S)$, for all $S \in\{0,1\}^{n}$.

Linear shift of a Function II

- Proof Outline.

$$
\begin{aligned}
\widehat{f}(S) & =\left\langle f, \chi_{S}\right\rangle=\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x) \chi_{S}(x) \\
& =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} g(x-c) \chi_{S}(x) \\
& =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} g(x-c) \chi_{S}(x-c) \chi_{S}(c) \\
& =\chi_{S}(c) \widehat{g}(S) \\
& =\chi_{c}(S) \widehat{g}(S)
\end{aligned}
$$

- In this proof, we used two properties of the Fourier basis function $\chi_{S}(x+y)=\chi_{S}(x) \chi_{S}(y)$, and $\chi_{S}(x)=\chi_{x}(S)$

Linear shift of a Function III

- Basically, this result states that g and the "shifted version of g " (i.e., the function f) have closely related Fourier coefficients. We interpret $\widehat{f}(S)$ as "rotation" of $\widehat{g}(S)$ by the "phase" $\chi_{c}(S)$. Basically, $\widehat{f}(S)$ has the same magnitude as $\widehat{g}(S)$, except that it is "rotated" suitably.
- Think: Let A be an affine space (i.e., offset of a vector subspace of $\{0,1\}^{n}$). What is $\widehat{1_{\{A\}}}$?

Convolution I

- Given two function $f, g:\{0,1\}^{n} \rightarrow \mathbb{R}$, we define the following function $h:\{0,1\}^{n} \rightarrow \mathbb{R}$

$$
h(x)=\frac{1}{N} \sum_{y \in\{0,1\}^{n}} f(y) g(x-y)
$$

- We say that h is the convolution of f and g. We represent the convolution of f and g as $(f * g)$.
- We have the following result

Lemma

$$
\widehat{(f * g)}=\widehat{f} \widehat{g}
$$

That is, we have $\widehat{(f * g)}(S)=\widehat{f}(S) \widehat{g}(S)$, for all $S \in\{0,1\}^{n}$.

Convolution II

- Proof outline.

$$
\begin{aligned}
\widehat{(f * g)}(S) & =\langle f * g, \chi s\rangle=\frac{1}{N} \sum_{x \in\{0,1\}^{n}}(f * g)(x) \chi_{s}(x) \\
& =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} \frac{1}{N} \sum_{y \in\{0,1\}^{n}} f(y) g(x-y) \chi_{s}(x) \\
& =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} \frac{1}{N} \sum_{y \in\{0,1\}^{n}} f(y) g(x-y) \chi_{s}(y) \chi_{s}(x-y) \\
& =\left(\frac{1}{N} \sum_{y \in\{0,1\}^{n}} f(y) \chi_{s}(y)\right)\left(\frac{1}{N} \sum_{r \in\{0,1\}^{n}} g(r) \chi_{s}(r)\right) \\
& =\widehat{f}(S) \widehat{g}(S)
\end{aligned}
$$

