Lecture 20: Discrete Fourier Analysis on the Boolean Hypercube (Recall and Basics)

Recall I

- Objective: Study function $f: \{0,1\}^n \to \mathbb{R}$
- Interpret functions $\{0,1\}^n \to \mathbb{R}$ as vectors in \mathbb{R}^N , where $N=2^n$
- Fourier Basis: A basis for the space \mathbb{R}^N
- Character Functions: For $S \in \{0,1\}^n$, we define

$$\chi_{\mathcal{S}}(x)=(-1)^{S_1x_1+\cdots+S_nx_n},$$

where $x = x_1 x_2 \dots x_n$ and $S = S_1 S_2 \dots S_n$.

We define the inner-product of two function as

$$\langle f,g\rangle = \frac{1}{N}\sum_{x\in\{0,1\}^n}f(x)g(x)$$

• With respect to this inner-product the Fourier basis $\{\chi_0, \chi_1, \dots, \chi_{N-1}\}$ is orthonormal

Recall II

• Every function f can be written as

$$f = \sum_{S \in \{0,1\}^n} \widehat{f}(S) \chi_S$$

- The mapping $f \mapsto \widehat{f}$ is the Fourier transformation
- There exists an $N \times N$ matrix \mathcal{F} such that $f \cdot \mathcal{F} = \widehat{f}$, for all f
- This result proves that the Fourier transformation is linear, that is, $\widehat{(f+g)} = \widehat{f} + \widehat{g}$ and $\widehat{(cf)} = c\widehat{f}$
- We saw that $\mathcal{F} \cdot \mathcal{F} = \frac{1}{N} I_{N \times N}$. So, for any function f, we have

$$\widehat{\widehat{(\widehat{f})}} = \frac{1}{N}f$$

- We saw two identities
 - Plancherel's theorem: $\langle f,g \rangle = \sum_{S \in \{0,1\}^n} \widehat{f}(S) \widehat{g}(S)$, and
 - Parseval's Identity: $\langle f, f \rangle = \sum_{S \in \{0,1\}^n} \widehat{f}(S)^2$.

Objective

- Our objective is to associate "properties of a function f" to "properties of the function \widehat{f} "
- In the sequel we shall consider a few such properties

Min-Entropy / Collision Probability I

- Let \mathbb{X} be a random variable over the sample space $\{0,1\}^n$
- We shall use $\mathbb X$ to represent the corresponding function $\{0,1\}^n \to \mathbb R$ defined as follows

$$\mathbb{X}(x) := \mathbb{P}\left[\mathbb{X} = x\right]$$

• Collision Probability. The probability that when we draw two independent samples according to the distribution \mathbb{X} , the two samples turn out to be identical. Note that this probability is $\operatorname{col}(\mathbb{X}) := \sum_{x \in \{0,1\}^n} \mathbb{X}(x)^2 = N\langle \mathbb{X}, \mathbb{X} \rangle$

Min-Entropy / Collision Probability II

• We can translate "collision probability" as a property of f into an alternate property of \widehat{f} as follows

Lemma

$$\mathsf{col}(\mathbb{X}) = N \sum_{S \in \{0,1\}^n} \widehat{\mathbb{X}}(S)^2$$

This lemma is a direct consequence of the Parseval's identity.

- Note that if we say that " \mathbb{X} has *low* collision probability" then it is equivalent to saying that " $\sum_{S \in \{0,1\}^n} \widehat{\mathbb{X}}(S)^2$ is *small*"
- So, we can use " $\sum_{S \in \{0,1\}^n} \widehat{\mathbb{X}}(S)^2$ is *small*" as a proxy for the guarantee that " \mathbb{X} has *low* collision probability"
- Min Entropy. We say that the min-entropy of \mathbb{X} is $\geqslant k$, if $\mathbb{P}\left[\mathbb{X}=x\right]\leqslant 2^{-k}=\frac{1}{K}$, for all $x\in\{0,1\}^n$.

Min-Entropy / Collision Probability III

 We can similarly get a property of a high min-entropy distribution X.

Lemma

If the min-entropy of X is $\geqslant k$, then we have

$$\sum_{S \in \{0,1\}^n} \widehat{\mathbb{X}}(S)^2 \leqslant \frac{1}{NK}$$

The proof follows from the observation that if the min-entropy of X is $\geq k$ then we have

$$col(X) = \sum_{x \in \{0,1\}^n} X(x)^2 \leqslant \sum_{x \in \{0,1\}^n} X(x) \cdot 2^{-k} = \frac{1}{K}$$

Min-Entropy / Collision Probability IV

• Intuitively, if a distribution $\mathbb X$ has "high min-entropy" then it has "low collision probability," which in turn implies that " $\sum_{S\in\{0,1\}^n}\widehat{\mathbb X}(S)^2$ is small"

Vector Spaces over Finite Fields I

- We need to understand vector spaces over finite fields to understand the next result
- In this document, we shall restrict our attention of finite fields of size p, where p is a prime. In general, finite fields can have size q, where q is a prime-power
- A finite field if defined by three objects $(\mathbb{Z}_p, +, \times)$.
 - **1** The set $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$
 - The addition operator +. This operator is integer addition mod p.
 - 3 The multiplication operator \times . This operator is integer multiplication mod p.
- For example over the field $(\mathbb{Z}_5, +, \times)$, we have 3+4=2, and $2\times 4=3$.
- Every element $x \in \mathbb{Z}_p$ has an additive inverse, represented by -x, such that x + (-x) = 0. For example -3 = 2.

Vector Spaces over Finite Fields II

- Every element $x \in \mathbb{Z}_p^* := \mathbb{Z}_p \setminus \{0\}$ has a multiplicative inverse, represented by 1/x, such that $x \times (1/x) = 1$. For example 1/3 = 2.
- We can interpret \mathbb{Z}_p^n as a vector space over the field $(\mathbb{Z}_p, +, \times)$.
- We shall consider vector subspace V of \mathbb{Z}_p^n that is spanned by the rows of the matrix G of the form

$$G = \left[I_{k \times k} \middle| P_{k \times (n-k)}\right]$$

• We consider the corresponding subspace V^{\perp} of \mathbb{Z}_p^n that is spanned by the rows of the matrix H of the form

$$H = \left[-P^{\mathsf{T}} \left| I_{(n-k)\times(n-k)} \right| \right]$$

Vector Spaces over Finite Fields III

- We defined the dot-product of two vectors $u, v \in \mathbb{Z}_p^n$ as $u_1v_1 + \cdots + u_nv_n$, where $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n)$
- Note that the dot-product of any row of G with any row of H is 0. This result follows from the fact that $G \cdot .H^{\mathsf{T}} = 0_{k \times (n-k)}$. This observation implies that the dot-product of any vector in V with any vector in V^{\perp} is 0.
- Note that V has dimension k and V^{\perp} has dimension (n-k).
- ullet The vectors space V^\perp is referred to as the *dual vector space* of V
- Note that the size of the vector space V is p^k and the size of the vector space V^{\perp} is p^{n-k} .

Vector Spaces over Finite Fields IV

• Let us consider an example. We shall work over the finite field $(\mathbb{Z}_2, +, \times)$. Consider the following matrix

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

The corresponding matrix H is defined as follows

$$H = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Note that the dot-product of any row of G with any row of H is 0. Consequently, the dot-product of any vector in the span of the rows-of-G with any vector in the span of the rows-of-H is always 0.

Vector Spaces over Finite Fields V

• Actually, any vector space $V \subseteq \mathbb{Z}_p^n$ as an associated $V^{\perp} \subseteq \mathbb{Z}_p^n$ such that the dot-product of their vectors is 0. (Think how to prove this result)

Fourier Transform of Vector Spaces I

- Let V be a vector sub-space of $\{0,1\}^n$ of dimension k. Let V^{\perp} be the dual vector sub-space of $\{0,1\}^n$ of dimension (n-k).
- Let $f = \mathbf{1}_{\{V\}}/|V|$. That is f is the following probability distribution

$$f(x) = \begin{cases} \frac{1}{K}, & x \in V \\ 0, & x \notin V \end{cases}$$

• Then, we have the following result

Lemma

$$\widehat{f}(S) = egin{cases} rac{1}{N}, & S \in V^{\perp} \\ 0, & S
ot\in V^{\perp} \end{cases}$$

Fourier Transform of Vector Spaces II

ullet Proof Outline. Suppose $S \in V^{\perp}$

$$\widehat{f}(S) = \langle f, \chi_S \rangle = \frac{1}{N} \sum_{x \in \{0,1\}^n} f(x) \chi_S(x)$$

$$= \frac{1}{N} \sum_{x \in V} f(x) \chi_S(x)$$

$$= \frac{1}{NK} \sum_{x \in X} (-1)^{S \cdot x}$$

$$= \frac{1}{NK} \sum_{x \in X} 1$$

$$= \frac{1}{NK} \cdot K = \frac{1}{N}$$

Fourier Transform of Vector Spaces III

Now, note that

$$\langle f, f \rangle = \frac{1}{N} \sum_{x \in \{0,1\}^n} f(x)^2 = \frac{1}{N} \sum_{x \in V} \frac{1}{K^2} = \frac{1}{NK}$$

Next, note that

$$\sum_{S \in \{0,1\}^n} \widehat{f}(S)^2 = \sum_{S \in V^{\perp}} \widehat{f}(S)^2 + \sum_{S \notin V^{\perp}} \widehat{f}(S)^2$$
$$= (N/K) \frac{1}{N^2} + \sum_{S \notin V^{\perp}} \widehat{f}(S)^2$$
$$= \frac{1}{NK} + \sum_{S \notin V^{\perp}} \widehat{f}(S)^2$$

Fourier Transform of Vector Spaces IV

By Parseval's identity, we have $\langle f, f \rangle = \sum_{S \in \{0,1\}^n} \widehat{f}(S)^2$. So, we get that

$$\sum_{S\not\in V^\perp}\widehat{f}(S)^2=0$$

That is, for every $S \not\in V^{\perp}$, we have $\widehat{f}(S) = 0$.

We can write the entire result tersely as follows

$$\left(\frac{\mathbf{1}_{\{V\}}}{|V|}\right) = \frac{1}{N}\mathbf{1}_{\{V^{\perp}\}}$$

As a corollary of this result, we can conclude that

$$\widehat{\delta_0} = \frac{1}{N} \mathbf{1}_{\{\{0,1\}^n\}}$$

Recall that δ_0 is the delta function that is 1 only at x=0; 0 elsewhere. And, the function $\mathbf{1}_{\{\{0,1\}^n\}}$ is the constant function that evaluates to 1 at every x.

Fourier Transform of Vector Spaces V

• Recursively use this result and the fact that $(V^\perp)^\perp = V$ to verify that $\widehat{\left(\widehat{f}\right)} = \frac{1}{N} f$