Lecture 20: Discrete Fourier Analysis on the Boolean Hypercube (Recall and Basics)
Recall I

- Objective: Study function $f : \{0, 1\}^n \rightarrow \mathbb{R}$
- Interpret functions $\{0, 1\}^n \rightarrow \mathbb{R}$ as vectors in \mathbb{R}^N, where $N = 2^n$
- Fourier Basis: A basis for the space \mathbb{R}^N
- Character Functions: For $S \in \{0, 1\}^n$, we define
 \[\chi_S(x) = (-1)^{S_1 x_1 + \cdots + S_n x_n}, \]
 where $x = x_1 x_2 \ldots x_n$ and $S = S_1 S_2 \ldots S_n$.
- We define the inner-product of two functions as
 \[\langle f, g \rangle = \frac{1}{N} \sum_{x \in \{0,1\}^n} f(x)g(x) \]
- With respect to this inner-product, the Fourier basis $\{\chi_0, \chi_1, \ldots, \chi_{N-1}\}$ is orthonormal
Every function f can be written as

$$f = \sum_{S \in \{0,1\}^n} \hat{f}(S) \chi_S$$

The mapping $f \mapsto \hat{f}$ is the Fourier transformation.

There exists an $N \times N$ matrix \mathcal{F} such that $f \cdot \mathcal{F} = \hat{f}$, for all f.

This result proves that the Fourier transformation is linear, that is, $(\hat{f + g}) = \hat{f} + \hat{g}$ and $(\hat{cf}) = c\hat{f}$.

We saw that $\mathcal{F} \cdot \mathcal{F} = \frac{1}{N} I_{N \times N}$. So, for any function f, we have

$$\hat{\left(\frac{1}{N} f\right)} = \frac{1}{N} \hat{f}$$

We saw two identities:

- Plancherel’s theorem: $\langle f, g \rangle = \sum_{S \in \{0,1\}^n} \hat{f}(S)\hat{g}(S)$, and
- Parseval’s Identity: $\langle f, f \rangle = \sum_{S \in \{0,1\}^n} \hat{f}(S)^2$.
Our objective is to associate “properties of a function \(f \)” to “properties of the function \(\hat{f} \)”

In the sequel we shall consider a few such properties
Let X be a random variable over the sample space $\{0, 1\}^n$.

We shall use X to represent the corresponding function $\{0, 1\}^n \to \mathbb{R}$ defined as follows

$$X(x) := \mathbb{P}[X = x]$$

Collision Probability. The probability that when we draw two independent samples according to the distribution X, the two samples turn out to be identical. Note that this probability is $\text{col}(X) := \sum_{x \in \{0, 1\}^n} X(x)^2 = N\langle X, X \rangle$
We can translate “collision probability” as a property of f into an alternate property of \hat{f} as follows:

Lemma

$$\text{col}(X) = N \sum_{S \in \{0,1\}^n} \hat{X}(S)^2$$

This lemma is a direct consequence of the Parseval’s identity.

- Note that if we say that “X has low collision probability” then it is equivalent to saying that “$\sum_{S \in \{0,1\}^n} \hat{X}(S)^2$ is small”.
- So, we can use “$\sum_{S \in \{0,1\}^n} \hat{X}(S)^2$ is small” as a proxy for the guarantee that “X has low collision probability”.
- Min Entropy. We say that the min-entropy of X is $\geq k$, if $\mathbb{P}[X = x] \leq 2^{-k} = \frac{1}{K}$, for all $x \in \{0,1\}^n$.

Fourier Analysis
We can similarly get a property of a *high min-entropy distribution* \(\mathcal{X} \).

Lemma

If the min-entropy of \(\mathcal{X} \) is \(\geq k \), then we have

\[
\sum_{S \in \{0,1\}^n} \hat{\mathcal{X}}(S)^2 \leq \frac{1}{NK}
\]

The proof follows from the observation that if the min-entropy of \(\mathcal{X} \) is \(\geq k \) then we have

\[
\text{col}(\mathcal{X}) = \sum_{x \in \{0,1\}^n} \mathcal{X}(x)^2 \leq \sum_{x \in \{0,1\}^n} \mathcal{X}(x) \cdot 2^{-k} = \frac{1}{K}
\]
Intuitively, if a distribution X has “high min-entropy” then it has “low collision probability,” which in turn implies that \[\sum_{S \in \{0,1\}^n} \hat{X}(S)^2 \text{ is small} \]
We need to understand vector spaces over finite fields to understand the next result.

In this document, we shall restrict our attention of finite fields of size p, where p is a prime. In general, finite fields can have size q, where q is a prime-power.

A finite field is defined by three objects $(\mathbb{Z}_p, +, \times)$.

1. The set $\mathbb{Z}_p = \{0, 1, \ldots, p-1\}$
2. The addition operator $+$. This operator is integer addition mod p.
3. The multiplication operator \times. This operator is integer multiplication mod p.

For example over the field $(\mathbb{Z}_5, +, \times)$, we have $3 + 4 = 2$, and $2 \times 4 = 3$.

Every element $x \in \mathbb{Z}_p$ has an additive inverse, represented by $-x$, such that $x + (-x) = 0$. For example $-3 = 2$.

Fourier Analysis
Every element $x \in \mathbb{Z}_p^* := \mathbb{Z}_p \setminus \{0\}$ has a multiplicative inverse, represented by $1/x$, such that $x \times (1/x) = 1$. For example $1/3 = 2$.

We can interpret \mathbb{Z}_p^n as a vector space over the field $(\mathbb{Z}_p, +, \times)$.

We shall consider vector subspace V of \mathbb{Z}_p^n that is spanned by the rows of the matrix G of the form

$$G = \begin{bmatrix} I_{k \times k} & P_{k \times (n-k)} \end{bmatrix}$$

We consider the corresponding subspace V^\perp of \mathbb{Z}_p^n that is spanned by the rows of the matrix H of the form

$$H = \begin{bmatrix} -P^T & I_{(n-k) \times (n-k)} \end{bmatrix}$$
We defined the dot-product of two vectors $u, v \in \mathbb{Z}_p^n$ as $u_1v_1 + \cdots + u_nv_n$, where $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n)$.

Note that the dot-product of any row of G with any row of H is 0. This result follows from the fact that $G \cdot H^\top = 0_{k \times (n-k)}$. This observation implies that the dot-product of any vector in V with any vector in V^\perp is 0.

Note that V has dimension k and V^\perp has dimension $(n - k)$.

The vectors space V^\perp is referred to as the dual vector space of V.

Note that the size of the vector space V is p^k and the size of the vector space V^\perp is p^{n-k}.
Let us consider an example. We shall work over the finite field \((\mathbb{Z}_2, +, \times) \). Consider the following matrix

\[
G = \begin{bmatrix}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
\end{bmatrix}
\]

The corresponding matrix \(H \) is defined as follows

\[
H = \begin{bmatrix}
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
\end{bmatrix}
\]

Note that the dot-product of any row of \(G \) with any row of \(H \) is 0. Consequently, the dot-product of any vector in the span of the rows-of-\(G \) with any vector in the span of the rows-of-\(H \) is always 0.
Actually, any vector space $V \subseteq \mathbb{Z}_p^n$ as an associated $V^\perp \subseteq \mathbb{Z}_p^n$ such that the dot-product of their vectors is 0. (Think how to prove this result)
Let V be a vector sub-space of $\{0, 1\}^n$ of dimension k. Let V^\perp be the dual vector sub-space of $\{0, 1\}^n$ of dimension $(n - k)$.

Let $f = \mathbb{1}_V / |V|$. That is f is the following probability distribution:

$$f(x) = \begin{cases} \frac{1}{k}, & x \in V \\ 0, & x \notin V \end{cases}$$

Then, we have the following result:

Lemma

$$\hat{f}(S) = \begin{cases} \frac{1}{N}, & S \in V^\perp \\ 0, & S \notin V^\perp \end{cases}$$
Proof Outline. Suppose $S \in V^\perp$

$$\hat{f}(S) = \langle f, \chi_S \rangle = \frac{1}{N} \sum_{x \in \{0,1\}^n} f(x) \chi_S(x)$$

$$= \frac{1}{N} \sum_{x \in V} f(x) \chi_S(x)$$

$$= \frac{1}{NK} \sum_{x \in X} (-1)^{S \cdot x}$$

$$= \frac{1}{NK} \sum_{x \in X} 1$$

$$= \frac{1}{NK} \cdot K = \frac{1}{N}$$
Now, note that
\[
\langle f, f \rangle = \frac{1}{N} \sum_{x \in \{0,1\}^n} f(x)^2 = \frac{1}{N} \sum_{x \in \mathcal{V}} \frac{1}{K^2} = \frac{1}{NK}
\]

Next, note that
\[
\sum_{S \in \{0,1\}^n} \hat{f}(S)^2 = \sum_{S \in \mathcal{V}^\perp} \hat{f}(S)^2 + \sum_{S \not\in \mathcal{V}^\perp} \hat{f}(S)^2
\]
\[
= \left(\frac{N}{K} \right) \frac{1}{N^2} + \sum_{S \not\in \mathcal{V}^\perp} \hat{f}(S)^2
\]
\[
= \frac{1}{NK} + \sum_{S \not\in \mathcal{V}^\perp} \hat{f}(S)^2
\]
By Parseval’s identity, we have $\langle f, f \rangle = \sum_{S \in \{0,1\}^n} \hat{f}(S)^2$. So, we get that

$$\sum_{S \notin V^\perp} \hat{f}(S)^2 = 0$$

That is, for every $S \notin V^\perp$, we have $\hat{f}(S) = 0$.

- We can write the entire result tersely as follows

$$\left(\frac{1\{|v\}|}{|V|} \right) = \frac{1}{N} 1\{|V^\perp|\}$$

- As a corollary of this result, we can conclude that

$$\hat{\delta}_0 = \frac{1}{N} 1\{|0,1|^n\}$$

Recall that δ_0 is the delta function that is 1 only at $x = 0$; 0 elsewhere. And, the function $1\{|0,1|^n\}$ is the constant function that evaluates to 1 at every x.
Recursively use this result and the fact that \((V^\perp)^\perp = V\) to verify that \(\hat{\left(\hat{f}\right)} = \frac{1}{N} f\).