Lecture 19: Discrete Fourier Analysis on the Boolean Hypercube (Introduction)

Recall

- Our objective is to study function $f: \{0,1\}^n \to \mathbb{R}$
- Every function f is equivalently represented as the vector $(f(0), f(1), \dots, f(N-1)) \in \mathbb{R}^N$, where $N = 2^n$
- For $S = S_1 S_2 \dots S_n \in \{0,1\}^n$, define the function

$$\chi_S(x) = (-1)^{S_1 x_1 + S_2 x_2 + \dots + S_n x_n},$$

where $x = x_1 x_2 \dots x_n$

• We defined an inner-product of functions

$$\langle f,g\rangle := \frac{1}{N} \sum_{x \in \{0,1\}^n} f(x)g(x)$$

• We showed that χ_S are orthonormal, i.e.,

$$\langle \chi_{\mathcal{S}}, \chi_{\mathcal{T}} \rangle = \begin{cases} 0, & \text{if } \mathcal{S} \neq \mathcal{T} \\ 1, & \text{if } \mathcal{S} = \mathcal{T} \end{cases}$$

Fourier Coefficients

• Since $\left\{\chi_S \colon S \in \{0,1\}^n\right\}$ is an orthonormal basis, we can express any f as follows

$$f = \widehat{f}(0)\chi_0 + \widehat{f}(1)\chi_1 + \cdots + \widehat{f}(N-1)\chi_{N-1},$$

where $\widehat{f}(S) \in \mathbb{R}$ and $S \in \{0,1\}^n$

• We interpret $(\widehat{f}(0),\widehat{f}(1),\ldots,\widehat{f}(N-1))$ as a function \widehat{f}

Fourier Transformation

- Fourier Transformation is a basis change that maps f to \hat{f} .
- We shall represent it as $f \stackrel{\mathcal{F}}{\mapsto} \widehat{f}$, where \mathcal{F} is the Fourier Transformation

Linearity of Fourier Transformation I

• Note that we have the following property. For any $S \in \{0,1\}^n$, we have

$$(f(0) \ f(1) \cdots f(N-1)) \cdot \frac{1}{N} (\chi_{\mathcal{S}}(0) \ \chi_{\mathcal{S}}(1) \cdots \chi_{\mathcal{S}}(N-1))^{\mathsf{T}} = \widehat{f}(\mathcal{S})$$

Define the matrix

$$\mathcal{F} = \frac{1}{N} \begin{bmatrix} \chi_0(0) & \chi_1(0) & \cdots & \chi_{N-1}(0) \\ \chi_0(1) & \chi_1(1) & \cdots & \chi_{N-1}(1) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_0(N-1) & \chi_1(N-1) & \cdots & \chi_{N-1}(N-1) \end{bmatrix}$$

ullet From the property mentioned above, we have $f\cdot \mathcal{F}=\widehat{f}$

Linearity of Fourier Transformation II

Claim

For two function $f, g: \{0,1\}^n \to \mathbb{R}$, we have

$$\widehat{(f+g)}=\widehat{f}+\widehat{g}$$

Proof.

$$\widehat{(f+g)} = (f+g)\mathcal{F} = f\mathcal{F} + g\mathcal{F} = \widehat{f} + \widehat{g}$$

Linearity of Fourier Transformation III

Claim

For a function $f: \{0,1\}^n \to \mathbb{R}$ and $c \in \mathbb{R}$, we have

$$\widehat{(cf)} = c\widehat{f}$$

Proof.

$$\widehat{cf} = (cf)\mathcal{F} = c(f\mathcal{F}) = c\widehat{f}$$

Fourier of a Fourier I

$\mathsf{Theorem}$

Let $f: \{0,1\}^n \to \mathbb{R}$. Then, we have

$$\widehat{\left(\widehat{f}\right)} = \frac{1}{N} \cdot f$$

Proof.

- We shall prove that $\mathcal{F} \cdot \mathcal{F} = \frac{1}{N} I_{N \times N}$. This result shall imply that $\widehat{\widehat{(f)}} = (f\mathcal{F})\mathcal{F} = f\left(\frac{1}{N} I_{N \times N}\right) = \frac{1}{N} I_{N \times N}$
- Let us compute the element $(\mathcal{FF})_{i,j}$. This element is the product of the *i*-th row of \mathcal{F} and the *j*-th column of \mathcal{F}
- The *j*-th column of \mathcal{F} is $\left(\frac{1}{N}\chi_j\right)^{\mathsf{T}}$
- The *i*-th row of \mathcal{F} is $(\chi_0(i) \chi_1(i) \cdots \chi_{N-1}(i))$
- Note that $\chi_S(x) = \chi_X(S)$, i.e., the matrix $\mathcal F$ is symmetric

Fourier of a Fourier II

- So, the *i*-th row of $\mathcal F$ is $\frac{1}{N}\chi_i$
- Therefore, we have $(\mathcal{F}\mathcal{F})_{i,j} = \frac{1}{N^2} \cdot \chi_i \cdot \chi_j^{\mathsf{T}} = \frac{1}{N} \langle \chi_i, \chi_j \rangle$. The orthonormality of the Fourier basis completes the proof

Plancherel Theorem and Parseval's Identity I

Theorem (Plancherel)

Suppose $f,g:\{0,1\}^n\to\mathbb{R}$. Then, the following holds

$$\langle f,g \rangle = \sum_{S \in \{0,1\}^n} \widehat{f}(S) \widehat{g}(S)$$

Plancherel Theorem and Parseval's Identity II

Proof.

$$\langle f, g \rangle = \left\langle \sum_{S \in \{0,1\}^n} \widehat{f}(S) \chi_S, \sum_{T \in \{0,1\}^n} \widehat{g}(T) \chi_T \right\rangle$$

$$= \sum_{S \in \{0,1\}^n} \widehat{f}(S) \left\langle \chi_S, \sum_{T \in \{0,1\}^n} \widehat{g}(T) \chi_T \right\rangle$$

$$= \sum_{S \in \{0,1\}^n} \widehat{f}(S) \sum_{T \in \{0,1\}^n} \langle \chi_S, \chi_T \rangle$$

$$= \sum_{S \in \{0,1\}^n} \widehat{f}(S) \widehat{g}(S)$$

Note that, if $f,g \colon \{0,1\}^n \to \{+1,-1\}$ then we have $\langle f,g \rangle = 1-\varepsilon$, there f and g disagree at εN inputs. Intuitively, if $\left|\langle f,g \rangle\right|$ is close to 1 then the functions are highly correlated. On the other hand, if $\left|\langle f,g \rangle\right|$ is close to 0 then the functions are independent.

Plancherel Theorem and Parseval's Identity III

Theorem (Parseval's Identity)

Suppose $f: \{0,1\}^n \to \mathbb{R}$. Then

$$\langle f, g \rangle = \sum_{S \in \{0,1\}^n} \widehat{f}(S)^2$$

Substitute f = g in Plancherel's theorem.

Plancherel Theorem and Parseval's Identity IV

Corollary

If
$$f:\{0,1\}^n \to \{+1,-1\}$$
, then $\sum_{S\in\{0,1\}^n}\widehat{f}(S)^2=1$

Follows from the fact that $\langle f, f \rangle = 1$ and Parseval's identity.