
Lecture 19: Discrete Fourier Analysis on the
Boolean Hypercube (Introduction)
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Recall

Our objective is to study function f : {0, 1}n → R
Every function f is equivalently represented as the vector
(f (0), f (1), . . . , f (N − 1)) ∈ RN , where N = 2n

For S = S1S2 . . . Sn ∈ {0, 1}n, define the function

χS(x) = (−1)S1x1+S2x2+···+Snxn ,

where x = x1x2 . . . xn
We defined an inner-product of functions

〈f , g〉 := 1
N

∑
x∈{0,1}n

f (x)g(x)

We showed that χS are orthonormal, i.e.,

〈χS , χT 〉 =

{
0, if S 6= T

1, if S = T
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Fourier Coefficients

Since
{
χS : S ∈ {0, 1}n

}
is an orthonormal basis, we can

express any f as follows

f = f̂ (0)χ0 + f̂ (1)χ1 +· · ·+ f̂ (N − 1)χN−1,

where f̂ (S) ∈ R and S ∈ {0, 1}n

We interpret (f̂ (0), f̂ (1), . . . , f̂ (N − 1)) as a function f̂
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Fourier Transformation

Fourier Transformation is a basis change that maps f to f̂ .

We shall represent it as f F7→ f̂ , where F is the Fourier
Transformation
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Linearity of Fourier Transformation I

Note that we have the following property. For any S ∈ {0, 1}n,
we have(

f (0) f (1) · · · f (N − 1)
)
· 1
N

(
χS(0) χS(1) · · · χS(N − 1)

)ᵀ
= f̂ (S)

Define the matrix

F =
1
N


χ0(0) χ1(0) · · · χN−1(0)
χ0(1) χ1(1) · · · χN−1(1)

...
...

. . .
...

χ0(N − 1) χ1(N − 1) · · · χN−1(N − 1)


From the property mentioned above, we have f · F = f̂
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Linearity of Fourier Transformation II

Claim
For two function f , g : {0, 1}n → R, we have

̂(f + g) = f̂ + ĝ

Proof.

̂(f + g) = (f + g)F = f F + gF = f̂ + ĝ
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Linearity of Fourier Transformation III

Claim
For a function f : {0, 1}n → R and c ∈ R, we have

(̂cf ) = cf̂

Proof.

ĉf = (cf )F = c(f F) = cf̂
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Fourier of a Fourier I

Theorem
Let f : {0, 1}n → R. Then, we have

(̂f̂ ) =
1
N
· f

Proof.
We shall prove that F · F = 1

N IN×N . This result shall imply

that (̂f̂ ) = (f F)F = f
(

1
N IN×N

)
= 1

N IN×N

Let us compute the element (FF)i ,j . This element is the
product of the i-th row of F and the j-th column of F

The j-th column of F is
(

1
Nχj

)ᵀ
The i-th row of F is

(
χ0(i) χ1(i) · · · χN−1(i)

)
Note that χS(x) = χx(S), i.e., the matrix F is symmetric
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Fourier of a Fourier II

So, the i-th row of F is 1
Nχi

Therefore, we have (FF)i ,j = 1
N2 · χi · χᵀ

j = 1
N

〈
χi , χj

〉
. The

orthonormality of the Fourier basis completes the proof
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Plancherel Theorem and Parseval’s Identity I

Theorem (Plancherel)

Suppose f , g : {0, 1}n → R. Then, the following holds

〈f , g〉 =
∑

S∈{0,1}n
f̂ (S)ĝ(S)
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Plancherel Theorem and Parseval’s Identity II

Proof.

〈f , g〉 =

〈 ∑
S∈{0,1}n

f̂ (S)χS ,
∑

T∈{0,1}n
ĝ(T )χT

〉

=
∑

S∈{0,1}n
f̂ (S)

〈
χS ,

∑
T∈{0,1}n

ĝ(T )χT

〉

=
∑

S∈{0,1}n
f̂ (S)

∑
T∈{0,1}n

〈χS , χT 〉

=
∑

S∈{0,1}n
f̂ (S)ĝ(S)

Note that, if f , g : {0, 1}n → {+1,−1} then we have
〈f , g〉 = 1− ε, there f and g disagree at εN inputs. Intuitively, if∣∣〈f , g〉∣∣ is close to 1 then the functions are highly correlated. On
the other hand, if

∣∣〈f , g〉∣∣ is close to 0 then the functions are
independent.

Fourier Analysis



Plancherel Theorem and Parseval’s Identity III

Theorem (Parseval’s Identity)

Suppose f : {0, 1}n → R. Then

〈f , g〉 =
∑

S∈{0,1}n
f̂ (S)2

Substitute f = g in Plancherel’s theorem.
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Plancherel Theorem and Parseval’s Identity IV

Corollary

If f : {0, 1}n → {+1,−1}, then
∑

S∈{0,1}n f̂ (S)
2 = 1

Follows from the fact that 〈f , f 〉 = 1 and Parseval’s identity.
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