Lecture 19: Discrete Fourier Analysis on the Boolean Hypercube (Introduction)

- Our objective is to study function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$
- Every function f is equivalently represented as the vector $(f(0), f(1), \ldots, f(N-1)) \in \mathbb{R}^{N}$, where $N=2^{n}$
- For $S=S_{1} S_{2} \ldots S_{n} \in\{0,1\}^{n}$, define the function

$$
\chi_{s}(x)=(-1)^{S_{1} x_{1}+S_{2} x_{2}+\cdots+S_{n} x_{n}}
$$

where $x=x_{1} x_{2} \ldots x_{n}$

- We defined an inner-product of functions

$$
\langle f, g\rangle:=\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x) g(x)
$$

- We showed that χ_{S} are orthonormal, i.e.,

$$
\left\langle\chi_{S}, \chi_{T}\right\rangle=\left\{\begin{array}{l}
0, \text { if } S \neq T \\
1, \text { if } S=T
\end{array}\right.
$$

- Since $\left\{\chi_{S}: S \in\{0,1\}^{n}\right\}$ is an orthonormal basis, we can express any f as follows

$$
f=\widehat{f}(0) \chi_{0}+\widehat{f}(1) \chi_{1}+\cdots+\widehat{f}(N-1) \chi_{N-1}
$$

where $\widehat{f}(S) \in \mathbb{R}$ and $S \in\{0,1\}^{n}$

- We interpret $(\widehat{f}(0), \widehat{f}(1), \ldots, \widehat{f}(N-1))$ as a function \widehat{f}
- Fourier Transformation is a basis change that maps f to \widehat{f}.
- We shall represent it as $f \stackrel{\mathcal{F}}{\mapsto} \widehat{f}$, where \mathcal{F} is the Fourier Transformation

Linearity of Fourier Transformation I

- Note that we have the following property. For any $S \in\{0,1\}^{n}$, we have

$$
(f(0) f(1) \cdots f(N-1)) \cdot \frac{1}{N}\left(\chi_{s}(0) \chi_{S}(1) \cdots \chi_{S}(N-1)\right)^{\top}=\widehat{f}(S)
$$

- Define the matrix

$$
\mathcal{F}=\frac{1}{N}\left[\begin{array}{cccc}
\chi_{0}(0) & \chi_{1}(0) & \cdots & \chi_{N-1}(0) \\
\chi_{0}(1) & \chi_{1}(1) & \cdots & \chi_{N-1}(1) \\
\vdots & \vdots & \ddots & \vdots \\
\chi_{0}(N-1) & \chi_{1}(N-1) & \cdots & \chi_{N-1}(N-1)
\end{array}\right]
$$

- From the property mentioned above, we have $f \cdot \mathcal{F}=\widehat{f}$

Linearity of Fourier Transformation II

Claim

For two function $f, g:\{0,1\}^{n} \rightarrow \mathbb{R}$, we have

$$
(\widehat{f+g})=\widehat{f}+\widehat{g}
$$

Proof.

$$
(\widehat{f+g})=(f+g) \mathcal{F}=f \mathcal{F}+g \mathcal{F}=\widehat{f}+\widehat{g} \quad \square
$$

Linearity of Fourier Transformation III

Claim

For a function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$, we have

$$
\widehat{(c f)}=c \widehat{f}
$$

Proof.

$$
\widehat{c f}=(c f) \mathcal{F}=c(f \mathcal{F})=c \widehat{f}
$$

Fourier of a Fourier I

Theorem

Let $f:\{0,1\}^{n} \rightarrow \mathbb{R}$. Then, we have

$$
\widehat{(\widehat{f})}=\frac{1}{N} \cdot f
$$

Proof.

- We shall prove that $\mathcal{F} \cdot \mathcal{F}=\frac{1}{N} I_{N \times N}$. This result shall imply that $(\widehat{\widehat{f}})=(f \mathcal{F}) \mathcal{F}=f\left(\frac{1}{N} I_{N \times N}\right)=\frac{1}{N} I_{N \times N}$
- Let us compute the element $(\mathcal{F F})_{i, j}$. This element is the product of the i-th row of \mathcal{F} and the j-th column of \mathcal{F}
- The j-th column of \mathcal{F} is $\left(\frac{1}{N} \chi_{j}\right)^{\top}$
- The i-th row of \mathcal{F} is $\left(\chi_{0}(i) \chi_{1}(i) \cdots \chi_{N-1}(i)\right)$
- Note that $\chi_{S}(x)=\chi_{x}(S)$, i.e., the matrix \mathcal{F} is symmetric
- So, the i-th row of \mathcal{F} is $\frac{1}{N} \chi_{i}$
- Therefore, we have $(\mathcal{F F})_{i, j}=\frac{1}{N^{2}} \cdot \chi_{i} \cdot \chi_{j}^{\top}=\frac{1}{N}\left\langle\chi_{i}, \chi_{j}\right\rangle$. The orthonormality of the Fourier basis completes the proof

Plancherel Theorem and Parseval's Identity I

Theorem (Plancherel)
Suppose $f, g:\{0,1\}^{n} \rightarrow \mathbb{R}$. Then, the following holds

$$
\langle f, g\rangle=\sum_{S \in\{0,1\}^{n}} \widehat{f}(S) \widehat{g}(S)
$$

Plancherel Theorem and Parseval's Identity II

Proof.

$$
\begin{aligned}
\langle f, g\rangle & =\left\langle\sum_{S \in\{0,1\}^{n}} \widehat{f}(S) \chi_{s}, \sum_{T \in\{0,1\}^{n}} \widehat{g}(T) \chi_{T}\right\rangle \\
& =\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)\left\langle\chi_{S}, \sum_{T \in\{0,1\}^{n}} \widehat{g}(T) \chi_{T}\right\rangle \\
& =\sum_{S \in\{0,1\}^{n}} \widehat{f}(S) \sum_{T \in\{0,1\}^{n}}\left\langle\chi_{S}, \chi_{T}\right\rangle \\
& =\sum_{S \in\{0,1\}^{n}} \widehat{f}(S) \widehat{g}(S)
\end{aligned}
$$

Note that, if $f, g:\{0,1\}^{n} \rightarrow\{+1,-1\}$ then we have $\langle f, g\rangle=1-\varepsilon$, there f and g disagree at εN inputs. Intuitively, if $|\langle f, g\rangle|$ is close to 1 then the functions are highly correlated. On the other hand, if $|\langle f, g\rangle|$ is close to 0 then the functions are independent.

Plancherel Theorem and Parseval's Identity III

Theorem (Parseval's Identity)
Suppose $f:\{0,1\}^{n} \rightarrow \mathbb{R}$. Then

$$
\langle f, g\rangle=\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{2}
$$

Substitute $f=g$ in Plancherel's theorem.

Plancherel Theorem and Parseval's Identity IV

Corollary
 If $f:\{0,1\}^{n} \rightarrow\{+1,-1\}$, then $\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{2}=1$

Follows from the fact that $\langle f, f\rangle=1$ and Parseval's identity.

