
Lecture 16: Generalized Lovász Local Lemma
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Recall

We design an experiment with independent random variables
X1, . . . ,Xm

We define bad events B1, . . . ,Bn, where the bad event Bi

depends on the variables
(
Xk1 , . . . ,Xkni

)
We define Vbli =

{
k1, . . . , kni

}
, the set of all variables that

the bad event Bi depends on
The bad event Bi can depend on the bad event Bj if
Vbli

⋂
Vblj 6= ∅

Suppose each bad event Bi depends on at most d other bad
events
Suppose we show that, for each bad event Bi , the probability
of its occurrence P [Bi ] 6 p

If ep(d + 1) 6 1, then

P
[
B1, . . . ,Bn

]
>

(
1− 1

d + 1

)n

> 0
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Generalized Lovász Local Lemma

We design an experiment with independent random variables
X1, . . . ,Xm

We define bad event B1, . . . ,Bn

Let Di be the set of indices of bad events that Bi depends on
Suppose we exhibit the existence of numbers (x1, . . . , xn) such
that the following holds. For each i ∈ {1, . . . , n}, we have

P [Bi ] 6 xi
∏
j∈Di

(1− xj)

Then the following holds

P
[
B1, . . . ,Bn

]
>

n∏
i=1

(1− xi ) > 0
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Notes

Prove Lovász Local Lemma using the Generalized Lovász Local
Lemma
The number (x1, . . . , xn) are not probabilities that add up to
1. This is an incorrect intuition
Prove the following corollary of the generalized Lovász Local
Lemma

Corollary

If for all i ∈ {1, . . . , n}, we have
∑

j∈Di
P
[
Bj

]
< 1/4, then

P
[
B1, . . . ,Bn

]
>

n∏
i=1

(
1− 2P

[
Bj

])
> 0

Prove the results in the previous lecture using this corollary
albeit with a slightly worse parameter choices
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Frugal Coloring

Definition (Frugal Coloring)

A β-frugal coloring of a graph G satisfies the following two
conditions

1 It is a valid coloring, and
2 In the neighborhood NG (v) of any vertex v ∈ V (G ), there are

at most β vertices with the same color

For example, a 1-frugal coloring of a graph is a coloring of the
graph G 2
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Frugal Coloring I

We shall show the following result

Theorem

For β ∈ N, and a graph G with maximum degree ∆ > ββ there
exists a β-frugal coloring using 16∆1+1/β colors.

Note that a graph with maximum degree ∆ can be 1-frugally
colored with ∆2 + 1 colors. The theorem mentioned above uses
asymptotically the same number of colors. We shall prove the
general result using the corollary of the generalized Lovász Local
Lemma
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Frugal Coloring II

Randomly color the vertices of the graph using C colors. We shall
consider two types of bad events.

Be , where e ∈ E (G ). If the two vertices at the endpoints of
the edge e receive the same color then this bad event occurs.
These will be called type-1 bad events.

Bu1,...,uβ+1 , where u1, . . . , uβ+1 ∈ V (G ). Suppose there exists
a vertex v such that u1, . . . , uβ+1 are distinct vertices in NG (v)
with identical colors. These will be called type-2 bad events.
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Frugal Coloring III

Note that one type-1 bad event Be can depend on at most 2∆
other types-1 bad events Be′

We are now interested in computing the number of type-2 bad
events that Be can depend on. Consider a type-2 bad event
Bu1,...,uβ+1 such that there exists v ∈ V (G ) such that
u1, . . . , uβ+1 ∈ NG (v). Suppose that the edge e = (a, b).
Note that a has at most ∆ neighbors. So, there are at most ∆

possible ways of choosing v . Note that we have

(
∆
β

)
ways of

choosing the remaining vertices {u1, . . . , uβ+1} \ {a}.

Similarly case for b as well. So, there are at most 2∆

(
∆
β

)
type-2 events that Be can depend on.
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Frugal Coloring IV

Similarly, a type-2 event Bu1,...,uβ+1 can depend on at most

(β + 1)∆ other types-1 bad events and (β + 1)∆

(
∆
β

)
other

type-2 bad events

Note that

P [Be ] 6
1
C

P
[
Bu1,...,uβ+1

]
6

1
Cβ

So, to prove that a β-frugal coloring exists using the corollary
of the generalized Lovász Local Lemma, it suffices to prove
that

(β + 1)∆ · 1
C

+ (β + 1)∆

(
∆
β

)
· 1
Cβ

<
1
4
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Frugal Coloring V

We can use the upper bound

(
n
k

)
6
( en
k

)k to upper-bound

the expression

(β + 1)∆

C
+

(β + 1)∆

Cβ

(
∆
β

)

This is left as an exercise
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