Lecture 16: Generalized Lovász Local Lemma
Recall

We design an experiment with independent random variables \(X_1, \ldots, X_m \)

We define bad events \(B_1, \ldots, B_n \), where the bad event \(B_i \) depends on the variables \((X_{k_1}, \ldots, X_{k_{n_i}}) \)

We define \(Vbl_i = \{ k_1, \ldots, k_{n_i} \} \), the set of all variables that the bad event \(B_i \) depends on

The bad event \(B_i \) can depend on the bad event \(B_j \) if \(Vbl_i \cap Vbl_j \neq \emptyset \)

Suppose each bad event \(B_i \) depends on at most \(d \) other bad events

Suppose we show that, for each bad event \(B_i \), the probability of its occurrence \(P[B_i] \leq p \)

If \(ep(d + 1) \leq 1 \), then

\[
P\left[\overline{B_1}, \ldots, \overline{B_n} \right] \geq \left(1 - \frac{1}{d + 1} \right)^n > 0
\]
We design an experiment with independent random variables X_1, \ldots, X_m.

We define bad event B_1, \ldots, B_n.

Let D_i be the set of indices of bad events that B_i depends on.

Suppose we exhibit the existence of numbers (x_1, \ldots, x_n) such that the following holds. For each $i \in \{1, \ldots, n\}$, we have

$$\Pr[\bar{B}_i] \leq x_i \prod_{j \in D_i} (1 - x_j)$$

Then the following holds

$$\Pr[\bar{B}_1, \ldots, \bar{B}_n] \geq \prod_{i=1}^n (1 - x_i) > 0$$
Prove Lovász Local Lemma using the Generalized Lovász Local Lemma

The number \((x_1, \ldots, x_n)\) are not probabilities that add up to 1. This is an incorrect intuition

Prove the following corollary of the generalized Lovász Local Lemma

Corollary

If for all \(i \in \{1, \ldots, n\}\), we have \(\sum_{j \in D_i} P[B_j] < 1/4\), then

\[
P\left[\overline{B_1}, \ldots, \overline{B_n}\right] \geq \prod_{i=1}^{n} \left(1 - 2P[B_j]\right) > 0
\]

Prove the results in the previous lecture using this corollary albeit with a slightly worse parameter choices
Frugal Coloring

Definition (Frugal Coloring)

A β-frugal coloring of a graph G satisfies the following two conditions:

1. It is a valid coloring, and
2. In the neighborhood $N_G(v)$ of any vertex $v \in V(G)$, there are at most β vertices with the same color.

For example, a 1-frugal coloring of a graph is a coloring of the graph G^2.
We shall show the following result

Theorem

For $\beta \in \mathbb{N}$, *and a graph* G *with maximum degree* $\Delta \geq \beta^\beta$ *there exists a* β*-frugal coloring using* $16\Delta^{1+1/\beta}$ *colors.*

Note that a graph with maximum degree Δ can be 1-frugally colored with $\Delta^2 + 1$ colors. The theorem mentioned above uses asymptotically the same number of colors. We shall prove the general result using the corollary of the generalized Lovász Local Lemma
Randomly color the vertices of the graph using C colors. We shall consider two types of bad events.

- \mathcal{B}_e, where $e \in E(G)$. If the two vertices at the endpoints of the edge e receive the same color then this bad event occurs. These will be called type-1 bad events.

- $\mathcal{B}_{u_1,\ldots,u_{\beta+1}}$, where $u_1,\ldots,u_{\beta+1} \in V(G)$. Suppose there exists a vertex v such that $u_1,\ldots,u_{\beta+1}$ are distinct vertices in $N_G(v)$ with identical colors. These will be called type-2 bad events.
Note that one type-1 bad event B_e can depend on at most 2Δ other types-1 bad events $B_{e'}$.

We are now interested in computing the number of type-2 bad events that B_e can depend on. Consider a type-2 bad event $B_{u_1,\ldots,u_{\beta+1}}$ such that there exists $v \in V(G)$ such that $u_1,\ldots,u_{\beta+1} \in N_G(v)$. Suppose that the edge $e = (a, b)$. Note that a has at most Δ neighbors. So, there are at most Δ possible ways of choosing v. Note that we have $\binom{\Delta}{\beta}$ ways of choosing the remaining vertices $\{u_1,\ldots,u_{\beta+1}\} \setminus \{a\}$.

Similarly case for b as well. So, there are at most $2\Delta \binom{\Delta}{\beta}$ type-2 events that B_e can depend on.
Similarly, a type-2 event $B_{u_1, \ldots, u_{\beta+1}}$ can depend on at most $(\beta + 1)\Delta$ other types-1 bad events and $(\beta + 1)\Delta \binom{\Delta}{\beta}$ other type-2 bad events.

Note that

$$P[B_e] \leq \frac{1}{C}$$

$$P[B_{u_1, \ldots, u_{\beta+1}}] \leq \frac{1}{C^\beta}$$

So, to prove that a β-frugal coloring exists using the corollary of the generalized Lovász Local Lemma, it suffices to prove that

$$(\beta + 1)\Delta \cdot \frac{1}{C} + (\beta + 1)\Delta \binom{\Delta}{\beta} \cdot \frac{1}{C^\beta} < \frac{1}{4}$$
We can use the upper bound \(\binom{n}{k} \leq \left(\frac{en}{k} \right)^k \) to upper-bound the expression

\[
\frac{(\beta + 1)\Delta}{C} + \frac{(\beta + 1)\Delta}{C^\beta} \binom{\Delta}{\beta}
\]

This is left as an exercise.