Lecture 15: Lovász Local Lemma

- Let $\mathbb{B}_{1}, \ldots, \mathbb{B}_{n}$ be indicator variables for bad events in an experiment
- Suppose each bad event is unlikely, that is $\mathbb{P}\left[\mathbb{B}_{i}\right] \leqslant p<1$, for all $i \in\{1, \ldots, n\}$
- Our goal is to avoid all the bad events
- Observe that if $\mathbb{P}\left[\overline{\mathbb{B}_{1}}, \ldots, \overline{\mathbb{B}_{n}}\right]>0$ then there exists a way to avoid all the bad events simultaneously
- Suppose that the events $\left\{\mathbb{B}_{1}, \ldots, \mathbb{B}_{n}\right\}$ are independent.
- Then, it is easy to see that

$$
\mathbb{P}\left[\overline{\mathbb{B}_{1}}, \ldots, \overline{\mathbb{B}_{n}}\right] \geqslant(1-p)^{n}>0
$$

- Lovász Local Lemma shall help us conclude the same even in the presence of "limited dependence" between the events

Theorem

Let $\left(\mathbb{B}_{1}, \ldots, \mathbb{B}_{n}\right)$ be a set of bad events. For each \mathbb{B}_{i}, where $i \in\{1, \ldots, n\}$, we have $\mathbb{P}\left[\mathbb{B}_{i}\right] \leqslant p$ and each event \mathbb{B}_{i} depends of at most d other bad events. If $\mathrm{e} p(d+1) \leqslant 1$ then

$$
\mathbb{P}\left[\overline{\mathbb{B}_{1}}, \ldots, \overline{\mathbb{B}_{n}}\right] \geqslant\left(1-\frac{1}{d+1}\right)^{n}>0
$$

The condition is also stated sometimes as $4 p d \leqslant 1$ instead of $\mathrm{e} p(d+1) \leqslant 1$.

Application: k-SAT I

- Let Φ be a k-SAT formula such that each variable occurs in at most $2^{k-2} / k$ different clauses
- Experiment. Let \mathbb{X}_{i} be an independent uniform random variable that assigns he variable x_{i} a value from \{true, false\}
- Bad Events. For the j-th clause we have the bad event \mathbb{B}_{j} that is the indicator variable for the event: The j-th clause is not satisfied
- Probability of a Bad Event. For any j, note that

$$
\mathbb{P}\left[\mathbb{B}_{j}\right] \leqslant \frac{1}{2^{k}}
$$

Because there is at most one assignment of the variables in the clause that makes it false.

Application: k-SAT II

- Dependence. Note that the j-th clause has k literals. The variable associated with any literal occurs in $2^{k-2} / k$ different clauses. So, the bad event \mathbb{B}_{j} can depend on at most $d=k \cdot\left(2^{k-2} / k\right)=2^{k-2}$ other different bad events.
- Conclusion. Note that $4 p d=1$, so Lovász Local Lemma implies that there exists an assignment that satisfies all the clauses in the formula simultaneously
- Intuitively, this result states that if each variable is sufficiently localized in influence then formulas have satisfiable assignments. Noe that the probability p of each bad event does not depend on the overall problem-instance size (i.e., the total number of variables)

Application: Vertex Coloring

- Let G be a graph with degree at most Δ
- Experiment. Let \mathbb{X}_{v} be the random variable that represents the color of the vertex $v \in V(G)$. Let \mathbb{X}_{v} be a color chosen uniformly (and independently) at random from the set $\{1, \ldots, C\}$.
- Bad Event. For every edge $e \in E(G)$, we have a bad event \mathbb{B}_{e} that is the indicator variable for both its vertices receiving identical colors
- Probability of the Bad Event. Note that $\mathbb{P}\left[\mathbb{B}_{e}\right]=\frac{1}{C}$
- Dependence. Note that the event \mathbb{B}_{e} does not depend on any other event $\mathbb{B}_{e^{\prime}}$ if the edges e and e^{\prime} do not share a common vertex. So, the event \mathbb{B}_{e} depends on at most $2(\Delta-1)$ other bad events.
- Conclusion. A valid coloring exists if $4 p d \leqslant 1$, i.e., $C \geqslant 8(\Delta-1)$

Application: Vertex Coloring (Bad Bound)

- Let G be a graph with degree at most Δ
- Experiment. Let \mathbb{X}_{v} be the random variable that represents the color of the vertex $v \in V(G)$. Let \mathbb{X}_{v} be a color chosen uniformly (and independently) at random from the set $\{1, \ldots, C\}$.
- Bad Event. For every vertex $v \in V(G)$, we have a bad event \mathbb{B}_{v} that is the indicator variable for one of v 's neighbors receives the same color as v.
- Probability of the Bad Event. Note that $\mathbb{P}\left[\mathbb{B}_{v}\right] \leqslant 1-\left(1-\frac{1}{C}\right)^{\Delta}$
- Dependence. Note that the event \mathbb{B}_{v} does not depend on any other event $\mathbb{B}_{v^{\prime}}$ if the sets $\{v\} \cup N(v)$ and $\left\{v^{\prime}\right\} \cup N\left(v^{\prime}\right)$ do not intersect. So, the event \mathbb{B}_{v} depends on at most $\Delta+\Delta(\Delta-1)=\Delta^{2}$ other bad events
- Conclusion. A valid coloring exiss if $4 p d \leqslant 1$, i.e., $C \geqslant$???

Claim

Let $S \subseteq\{1, \ldots, n\}$. Then, we have:

$$
\mathbb{P}\left[\mathbb{B}_{i} \mid \bigwedge_{k \in S} \overline{\mathbb{B}_{k}}\right] \leqslant \frac{1}{d+1}
$$

Assuming this claim, it is easy to prove the Lovász Local Lemma

$$
\begin{aligned}
\mathbb{P}\left[\bigwedge_{i=}^{n} \overline{\mathbb{B}_{i}}\right] & =\prod_{i=1}^{n} \mathbb{P}\left[\overline{\mathbb{B}_{i}} \mid \bigwedge_{k<i} \overline{\mathbb{B}_{k}}\right] \\
& \geqslant \prod_{i=1}^{n}\left(1-\frac{1}{d+1}\right)=\left(1-\frac{1}{d+1}\right)^{n}>0
\end{aligned}
$$

- We shall proceed by induction on $|S|$
- Base Case. If $|S|=0$, the the claim holds, because

$$
\mathbb{P}\left[\mathbb{B}_{i} \mid \bigwedge_{k \in S} \overline{\mathbb{B}_{k}}\right]=\mathbb{P}\left[\mathbb{B}_{i}\right] \leqslant p \leqslant \frac{1}{\mathrm{e}(d+1)} \leqslant \frac{1}{d+1}
$$

- Inductive Hypothesis. Assume that the claim holds for all $|S|<t$
- Induction. We shall now prove the claim for $|C|=t$. Suppose D_{i} be the set of all j such that the bad event \mathbb{A}_{i} (possibly) depends on the bad event \mathbb{A}_{j}
- Easy Case. Suppose $S_{i} \cap D_{i}=\emptyset$. This is an easy case because

$$
\mathbb{P}\left[\mathbb{B}_{i} \mid \bigwedge_{k \in S} \overline{\mathbb{B}_{k}}\right]=\mathbb{P}\left[\mathbb{B}_{i}\right] \leqslant p \leqslant \frac{1}{\mathrm{e}(d+1)} \leqslant \frac{1}{d+1}
$$

- Remaining Case. Suppose $S \cap D_{i} \neq \emptyset$.

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{B}_{i} \mid \bigwedge_{k \in S} \overline{\mathbb{B}_{k}}\right] & =\mathbb{P}\left[\mathbb{B}_{i} \mid \bigwedge_{k \in S \cap D_{i}} \overline{\mathbb{B}_{k}}, \bigwedge_{k \in S \backslash D_{i}} \overline{\mathbb{B}_{k}}\right] \\
& =\frac{\mathbb{P}\left[\mathbb{B}_{i}, \bigwedge_{k \in S \cap D_{i}} \overline{\mathbb{B}_{k}} \mid \bigwedge_{k \in S \backslash D_{i}} \overline{\mathbb{B}_{k}}\right]}{\mathbb{P}\left[\bigwedge_{k \in S \cap D_{i}} \overline{\mathbb{B}_{k}} \mid \bigwedge_{k \in S \backslash D_{i}} \overline{\mathbb{B}_{k}}\right]} \\
& \leqslant \frac{\mathbb{P}\left[\mathbb{B}_{i} \mid \bigwedge_{k \in S \backslash D_{i}} \overline{\mathbb{B}_{k}}\right]}{\mathbb{P}\left[\bigwedge_{k \in S \cap D_{i}} \overline{\mathbb{B}_{k}} \mid \bigwedge_{k \in S \backslash D_{i}} \overline{\mathbb{B}_{k}}\right]} \\
& =\frac{\mathbb{P}\left[\mathbb{B}_{i}\right]}{\mathbb{P}\left[\bigwedge_{k \in S \cap D_{i}} \overline{\mathbb{B}_{k}} \mid \bigwedge_{k \in S \backslash D_{i}} \overline{\mathbb{B}_{k}}\right]}
\end{aligned}
$$

- Our goal now is to lower-bound the denominator
- Suppose $S \cap D_{i}=\left\{i_{1}, \ldots, i_{z}\right\}$
- Using the chain rule, we can write the denominator

$$
\mathbb{P}\left[\bigwedge_{k \in S \cap D_{i}} \overline{\mathbb{B}_{k}} \mid \bigwedge_{k \in S \backslash D_{i}} \overline{\mathbb{B}_{k}}\right]
$$

as follows

$$
\prod_{\ell=1}^{z} \mathbb{P}\left[\overline{\mathbb{B}_{i_{\ell}}} \mid \bigwedge_{k \in S \backslash D_{i}} \overline{\mathbb{B}_{k}}, \bigwedge_{k^{\prime} \in\left\{i_{1}, \ldots, i_{\ell-1}\right\}} \overline{\mathbb{B}_{k^{\prime}}}\right]
$$

- Note that each probability term is conditioned on $<t$ bad events. So, we can apply the induction hypothesis. We get

$$
\begin{aligned}
\prod_{\ell=1}^{z} \mathbb{P}\left[\overline{\mathbb{B}_{i_{\ell}}} \mid \bigwedge_{k \in S \backslash D_{i}} \overline{\mathbb{B}_{k}}, \bigwedge_{k^{\prime} \in\left\{i_{1}, \ldots, i_{\ell-1}\right\}} \overline{\mathbb{B}_{k^{\prime}}}\right] & \geqslant \prod_{\ell=1}^{z}\left(1-\frac{1}{d+1}\right) \\
& =\left(1-\frac{1}{d+1}\right)^{z} \\
& \geqslant\left(1-\frac{1}{d+1}\right)^{d} \\
& \geqslant \frac{1}{\mathrm{e}}
\end{aligned}
$$

- Our goal of lower-bounding the denominator is complete. Let us return to our original expression

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{B}_{i} \mid \bigwedge_{k \in S} \overline{\mathbb{B}_{k}}\right] & \leqslant \frac{\mathbb{P}\left[\mathbb{B}_{i}\right]}{\mathbb{P}\left[\bigwedge_{k \in S \cap D_{i}}^{\overline{\mathbb{B}_{k}}} \mid \bigwedge_{k \in S \backslash D_{i}} \overline{\mathbb{B}_{k}}\right]} \\
& \leqslant \mathrm{e}\left[\mathbb{B}_{i}\right] \leqslant \frac{1}{d+1}
\end{aligned}
$$

- This completes the proof by induction
- We shall prove a more general result in the next lecture

