
Lecture 15: Lovász Local Lemma
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Introduction

Let B1, . . . ,Bn be indicator variables for bad events in an
experiment
Suppose each bad event is unlikely, that is P [Bi ] 6 p < 1, for
all i ∈ {1, . . . , n}
Our goal is to avoid all the bad events

Observe that if P
[
B1, . . . ,Bn

]
> 0 then there exists a way to

avoid all the bad events simultaneously
Suppose that the events {B1, . . . ,Bn} are independent.
Then, it is easy to see that

P
[
B1, . . . ,Bn

]
> (1− p)n > 0

Lovász Local Lemma shall help us conclude the same even in
the presence of “limited dependence” between the events
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The Statement

Theorem
Let (B1, . . . ,Bn) be a set of bad events. For each Bi , where
i ∈ {1, . . . , n}, we have P [Bi ] 6 p and each event Bi depends of at
most d other bad events. If ep(d + 1) 6 1 then

P
[
B1, . . . ,Bn

]
>

(
1− 1

d + 1

)n

> 0

The condition is also stated sometimes as 4pd 6 1 instead of
ep(d + 1) 6 1.
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Application: k-SAT I

Let Φ be a k-SAT formula such that each variable occurs in at
most 2k−2/k different clauses

Experiment. Let Xi be an independent uniform random
variable that assigns he variable xi a value from {true, false}
Bad Events. For the j-th clause we have the bad event Bj

that is the indicator variable for the event: The j-th clause is
not satisfied

Probability of a Bad Event. For any j , note that

P
[
Bj

]
6

1
2k

Because there is at most one assignment of the variables in
the clause that makes it false.
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Application: k-SAT II

Dependence. Note that the j-th clause has k literals. The
variable associated with any literal occurs in 2k−2/k different
clauses. So, the bad event Bj can depend on at most
d = k · (2k−2/k) = 2k−2 other different bad events.

Conclusion. Note that 4pd = 1, so Lovász Local Lemma
implies that there exists an assignment that satisfies all the
clauses in the formula simultaneously

Intuitively, this result states that if each variable is sufficiently
localized in influence then formulas have satisfiable
assignments. Noe that the probability p of each bad event
does not depend on the overall problem-instance size (i.e., the
total number of variables)
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Application: Vertex Coloring

Let G be a graph with degree at most ∆

Experiment. Let Xv be the random variable that represents
the color of the vertex v ∈ V (G ). Let Xv be a color chosen
uniformly (and independently) at random from the set
{1, . . . ,C}.
Bad Event. For every edge e ∈ E (G ), we have a bad event
Be that is the indicator variable for both its vertices receiving
identical colors
Probability of the Bad Event. Note that P [Be ] = 1

C

Dependence. Note that the event Be does not depend on
any other event Be′ if the edges e and e ′ do not share a
common vertex. So, the event Be depends on at most
2(∆− 1) other bad events.
Conclusion. A valid coloring exists if 4pd 6 1, i.e.,
C > 8(∆− 1)
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Application: Vertex Coloring (Bad Bound)

Let G be a graph with degree at most ∆

Experiment. Let Xv be the random variable that represents
the color of the vertex v ∈ V (G ). Let Xv be a color chosen
uniformly (and independently) at random from the set
{1, . . . ,C}.
Bad Event. For every vertex v ∈ V (G ), we have a bad event
Bv that is the indicator variable for one of v ’s neighbors
receives the same color as v .
Probability of the Bad Event. Note that

P [Bv ] 6 1−
(
1− 1

C

)∆

Dependence. Note that the event Bv does not depend on
any other event Bv ′ if the sets {v} ∪ N(v) and {v ′} ∪ N(v ′)
do not intersect. So, the event Bv depends on at most
∆ + ∆(∆− 1) = ∆2 other bad events
Conclusion. A valid coloring exiss if 4pd 6 1, i.e., C >???
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Proof of Lovász Local Lemma

Claim
Let S ⊆ {1, . . . , n}. Then, we have:

P

Bi

∣∣∣∣∣∣
∧
k∈S

Bk

 6
1

d + 1

Assuming this claim, it is easy to prove the Lovász Local Lemma

P

 n∧
i=

Bi

 =
n∏

i=1

P

Bi

∣∣∣∣∣∣
∧
k<i

Bk


>

n∏
i=1

(
1− 1

d + 1

)
=

(
1− 1

d + 1

)n

> 0
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Proof of the Claim I

We shall proceed by induction on |S |
Base Case. If |S | = 0, the the claim holds, because

P

Bi

∣∣∣∣∣∣
∧
k∈S

Bk

 = P [Bi ] 6 p 6
1

e(d + 1)
6

1
d + 1

Inductive Hypothesis. Assume that the claim holds for all
|S | < t

Induction. We shall now prove the claim for |C | = t. Suppose
Di be the set of all j such that the bad event Ai (possibly)
depends on the bad event Aj

Easy Case. Suppose Si ∩Di = ∅. This is an easy case because

P

Bi

∣∣∣∣∣∣
∧
k∈S

Bk

 = P [Bi ] 6 p 6
1

e(d + 1)
6

1
d + 1
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Proof of the Claim II

Remaining Case. Suppose S ∩ Di 6= ∅.

P

Bi

∣∣∣∣∣∣
∧
k∈S

Bk

 = P

Bi

∣∣∣∣∣∣
∧

k∈S∩Di

Bk ,
∧

k∈S\Di

Bk


=

P
[
Bi ,
∧

k∈S∩Di
Bk

∣∣∣∧k∈S\Di
Bk

]
P
[∧

k∈S∩Di
Bk

∣∣∣∧k∈S\Di
Bk

]
6

P
[
Bi

∣∣∣∧k∈S\Di
Bk

]
P
[∧

k∈S∩Di
Bk

∣∣∣∧k∈S\Di
Bk

]
=

P [Bi ]

P
[∧

k∈S∩Di
Bk

∣∣∣∧k∈S\Di
Bk

]
Our goal now is to lower-bound the denominator
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Proof of the Claim III

Suppose S ∩ Di = {i1, . . . , iz}
Using the chain rule, we can write the denominator

P

 ∧
k∈S∩Di

Bk

∣∣∣∣∣∣
∧

k∈S\Di

Bk


as follows

z∏
`=1

P

Bi`

∣∣∣∣∣∣∣
∧

k∈S\Di

Bk ,
∧

k ′∈{i1,...,i`−1}

Bk ′



LLL



Proof of the Claim IV

Note that each probability term is conditioned on < t bad
events. So, we can apply the induction hypothesis. We get

z∏
`=1

P

Bi`

∣∣∣∣∣∣∣
∧

k∈S\Di

Bk ,
∧

k ′∈{i1,...,i`−1}

Bk ′

 >
z∏

`=1

(
1− 1

d + 1

)

=

(
1− 1

d + 1

)z

>

(
1− 1

d + 1

)d

>
1
e
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Proof of the Claim V

Our goal of lower-bounding the denominator is complete. Let
us return to our original expression

P

Bi

∣∣∣∣∣∣
∧
k∈S

Bk

 6
P [Bi ]

P
[∧

k∈S∩Di
Bk

∣∣∣∧k∈S\Di
Bk

]
6 eP [Bi ] 6

1
d + 1

This completes the proof by induction

We shall prove a more general result in the next lecture
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