


Introduction

o Let By,...,B, be indicator variables for bad events in an
experiment

@ Suppose each bad event is unlikely, that is P[B;] < p < 1, for
all i e {1,...,n}

@ Our goal is to avoid all the bad events

@ Observe that if P [E, e ,E} > 0 then there exists a way to
avoid all the bad events simultaneously

@ Suppose that the events {Bq,...,B,} are independent.

@ Then, it is easy to see that
P[Br....Ba| > (1-p)" >0

@ Lovasz Local Lemma shall help us conclude the same even in
the presence of “limited dependence” between the events
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The Statement

Theorem

Let (By1,...,B,) be a set of bad events. For each B;, where
i€{l,...,n}, we have P [B;] < p and each event B; depends of at
most d other bad events. Ifep(d + 1) < 1 then

IP[E,...,E} > (1—(%1)%0

The condition is also stated sometimes as 4pd < 1 instead of
ep(d+1) <L
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Application: k-SAT |

o Let ® be a k-SAT formula such that each variable occurs in at
most 2K=2 /k different clauses

o Experiment. Let X; be an independent uniform random
variable that assigns he variable x; a value from {true, false}

e Bad Events. For the j-th clause we have the bad event B;
that is the indicator variable for the event: The j-th clause is
not satisfied

o Probability of a Bad Event. For any j, note that

1

P [BJ] < 2k

Because there is at most one assignment of the variables in
the clause that makes it false.
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Application: k-SAT Il

o Dependence. Note that the j-th clause has k literals. The
variable associated with any literal occurs in 2k=2 /k different
clauses. So, the bad event B; can depend on at most
d = k- (2k=2/k) = 2k=2 other different bad events.

@ Conclusion. Note that 4pd = 1, so Lovasz Local Lemma
implies that there exists an assignment that satisfies all the
clauses in the formula simultaneously

@ Intuitively, this result states that if each variable is sufficiently
localized in influence then formulas have satisfiable
assignments. Noe that the probability p of each bad event
does not depend on the overall problem-instance size (i.e., the
total number of variables)
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Application: Vertex Coloring

@ Let G be a graph with degree at most A

o Experiment. Let X, be the random variable that represents
the color of the vertex v € V(G). Let X, be a color chosen
uniformly (and independently) at random from the set
{1,...,C}.

e Bad Event. For every edge e € E(G), we have a bad event
Be that is the indicator variable for both its vertices receiving
identical colors

o Probability of the Bad Event. Note that P [B.] = &

@ Dependence. Note that the event B, does not depend on
any other event B,/ if the edges e and ¢’ do not share a

common vertex. So, the event B, depends on at most
2(A — 1) other bad events.

e Conclusion. A valid coloring exists if 4pd < 1, i.e.,
C>8(A-1)
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Application: Vertex Coloring (Bad Bound)

Let G be a graph with degree at most A

Experiment. Let X, be the random variable that represents
the color of the vertex v € V(G). Let X, be a color chosen
uniformly (and independently) at random from the set
{1,...,C}.

Bad Event. For every vertex v € V(G), we have a bad event
B, that is the indicator variable for one of v's neighbors
receives the same color as v.

Probability of the Bad Event. Note that
A
P[B,]<1- (1—%)
Dependence. Note that the event B, does not depend on
any other event B,/ if the sets {v} U N(v) and {V'} U N(V/)

do not intersect. So, the event B, depends on at most
A+ A(A — 1) = A? other bad events

Conclusion. A valid coloring exiss if 4pd < 1, i.e., C >77??
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Proof of Lovasz Local Lemma

Let S C {1,...,n}. Then, we have:

P |B; /\Bk <—
keS

Assuming this claim, it is easy to prove the Lovasz Local Lemma

/\IB%,- HIP Bi| A\ B

k<i

/H( d+1> (1—dlel>n>0
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Proof of the Claim |

@ We shall proceed by induction on |S|

e Base Case. If|S| =0, the the claim holds, because

1 1
<
d+1) S d—+1

P|Bi|/\B«| =PB]<p<
kes e

@ Inductive Hypothesis. Assume that the claim holds for all
S| <t

@ Induction. We shall now prove the claim for|C| = t. Suppose
D; be the set of all j such that the bad event A; (possibly)
depends on the bad event A;

e Easy Case. Suppose S;ND; = (). This is an easy case because

_ 1 1
P|B;|\Bx| =P[Bi]<p< <
[ ke/\s k] Bil<p< G Sara
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Proof of the Claim Il

e Remaining Case. Suppose S N D; # ().
P|B|/\B«| =P |B| A\ B, \ B«
kes keSND;  keS\D;

P [Bh Akesnp, Be ‘/\keS\Di BT"}

P [/\keSﬂD; By ’/\kES\Df BT"}
P [Bi )/\keS\D; BTk}

P [Akestf By ‘/\kES\D,- BTk}
- P [Bi]

]P) |:/\k€SﬂD,' JBTk ‘/\kES\D, ]BTk:|

@ Our goal now is to lower-bound the denominator
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Proof of the Claim IlI

@ Suppose SND; ={i,... iy}

@ Using the chain rule, we can write the denominator

Pl A B A\ Bk

keSND; keS\D;

as follows

z
o5 A 5 A &
/=1

keS\D; k'e{iy..rie—1}
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Proof of the Claim IV

@ Note that each probability term is conditioned on < t bad
events. So, we can apply the induction hypothesis. We get

z o o L z 1
gp Big /\ Bk» /\ Bk’ >H<1_d+1>

kES\D,' k’E{f17...,I'g_1} (=1
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Proof of the Claim V

@ Our goal of lower-bounding the denominator is complete. Let
us return to our original expression

- P |B;
P |Bi| A\ Bi| < = —
keS P [/\keSmD,- By )/\keS\D,— Bk}
1
SPBI< 57

@ This completes the proof by induction

@ We shall prove a more general result in the next lecture
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