Lecture 13: Martingales and Azuma's Inequality (Few Details)

Doob's Martingale I

- We prove that Doob's construction yields a martingale
- Suppose $\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}$ are random variables over the sample space $\Omega_{1}, \ldots, \Omega_{n}$ respectively
- Let $\mathbb{X}=\left(\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}\right)$ be the random variable over $\Omega=\Omega_{1} \times \cdots \times \Omega_{n}$
- Let $\{\emptyset, \Omega\}=\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{n}$ be the natural filtration associated with $\left(\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}\right)$
- Suppose $f: \Omega \rightarrow \mathbb{R}$ be a function
- For $0 \leqslant i \leqslant n$, consider the function $g_{i}: \Omega \rightarrow \mathbb{R}$ defined as follows

$$
g_{i}(x)=\mathbb{E}\left[f\left(\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}\right) \mid \mathcal{F}_{i}\right](x)
$$

Suppose $\left(x_{1}, \ldots, x_{i}\right)=\left(\omega_{1}, \ldots, \omega_{i}\right)$. Then, the function $g_{i}(x)$ is the conditional expectation of $f(y)$, for all y such that $\left(y_{1}, \ldots, y_{i}\right)=\left(\omega_{1}, \ldots, \omega_{i}\right)$.

Doob's Martingale II

- First observation

Observation

For $0 \leqslant i \leqslant n$, the function g_{i} is \mathcal{F}_{i}-measurable.
This is easy to see because if $\mathcal{F}_{i}(x)=\mathcal{F}_{i}(y)$, i.e., the first i outcomes of x and y match, then we have $g_{i}(x)=g_{i}(y)$.

- Define the random variable $\mathbb{G}_{i}=g_{i}(\mathbb{X})$.

Doob's Martingale III

Observations.

- Observe that the random variable \mathbb{G}_{i} is \mathcal{F}_{i}-measurable
- Note that $\mathbb{G}_{0}=\mathbb{E}[f(\mathbb{X})]$

Doob's Martingale IV

- Crucial lemma

Lemma

$$
\mathbb{E}\left[\mathbb{G}_{i+1} \mid \mathcal{F}_{i}\right](x)=\left(\mathbb{G}_{i} \mid \mathcal{F}_{i}\right)(x)
$$

The proof is on the next slide. Note that this result suffices to show that $\left(\mathbb{G}_{0}, \ldots, \mathbb{G}_{n}\right)$ is a martingale with respect to the natural filtration $\{\emptyset, \Omega\}=\mathcal{F}_{0} \subset \mathcal{F}_{1}, \subset \cdots \subset \mathcal{F}_{n}$

Doob's Martingale V

Proof.

- Suppose $\left(x_{1}, \ldots, x_{i}\right)=\left(\omega_{1}, \ldots, \omega_{i}\right)$
- Note that the RHS is $\left(\mathbb{G}_{i} \mid \mathcal{F}_{i}\right)(x)=\mathbb{E}\left[f\left(\omega_{1}, \ldots, \omega_{i}, \mathbb{X}_{i+1}, \ldots, \mathbb{X}_{n}\right)\right]$
- Note that the LHS is

$$
\begin{aligned}
& \sum_{y \in \Omega} \mathbb{P}\left[\mathbb{X}=y \mid \mathbb{X}_{1}=\omega_{1}, \ldots, \mathbb{X}_{i}=\omega_{i}\right] g_{i+1}(y) \\
= & \sum_{y \in \Omega} \sum_{\omega_{i+1} \in \Omega_{i+\mathbf{1}}} \mathbb{P}\left[\mathbb{X}=y, \mathbb{X}_{i+1}=\omega_{i+1} \mid \mathbb{X}_{1}=\omega_{1}, \ldots, \mathbb{X}_{i}=\omega_{i}\right] g_{i+1}(y) \\
= & \sum_{\omega_{i+1} \in \Omega_{i+1}} \mathbb{P}\left[\mathbb{X}_{i+1}=\omega_{i+1} \mid \mathbb{X}_{1}=\omega_{1}, \ldots, \mathbb{X}_{i}=\omega_{i}\right] \\
& \sum_{y \in \Omega} \mathbb{P}\left[\mathbb{X}=y \mid \mathbb{X}_{1}=\omega_{1}, \ldots, \mathbb{X}_{i}=\omega_{i}, \mathbb{X}_{i+1}=\omega_{i+1}\right] g_{i+1}(y) \\
= & \sum_{\omega_{i+1} \in \Omega} \mathbb{P}\left[\mathbb{X}_{i+1}=\omega_{i+1} \mid \mathbb{X}_{1}=\omega_{1}, \ldots, \mathbb{X}_{i}=\omega_{i}\right] \\
& \mathbb{E}\left[f\left(\omega_{1}, \ldots, \omega_{i+1}, \mathbb{X}_{i+2}, \ldots, \mathbb{X}_{n}\right)\right] \\
= & \mathbb{E}\left[f\left(\omega_{1}, \ldots, \omega_{i}, \mathbb{X}_{i+1}, \ldots, \mathbb{X}_{n}\right)\right]
\end{aligned}
$$

Application of Hoeffding's Lemma in Azuma's Inequalityl

- Let $\left(\Delta \mathbb{G}_{1}, \ldots, \Delta \mathbb{G}_{n}\right)$ be a martingale difference sequence with respect to a filtration $\{\emptyset, \Omega\}=\mathcal{F}_{0} \subset \mathcal{F}_{1}, \subset \cdots \subset \mathcal{F}_{n}$
- For $1 \leqslant i \leqslant n$ and $x \in \Omega$ let $S_{i, x}$ be the support of the conditional distribution $\left(\Delta \mathbb{G}_{i} \mid \mathcal{F}_{i-1}\right)(x)$. Let $a_{i, x}$ and $b_{i, x}$ be the infimum and the supremum of the elements in $S_{i, x}$. Suppose, there exists c_{i} such that $b_{i, x}-a_{i, x} \leqslant c_{i}$.
- Our goal is to prove a crucial step in the proof of Azuma's inequality that shows

$$
\mathbb{P}\left[\sum_{i=1}^{n} \Delta \mathbb{G}_{i} \geqslant t\right] \leqslant \exp \left(\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

Application of Hoeffding's Lemma in Azuma's InequalitylI

- The proof is similar to the proof of the Hoeffding's bound, except a crucial step. Our focus is that particular step. We want to claim the following

$$
\mathbb{E}\left[\exp \sum_{i=1}^{n} h \Delta \mathbb{G}_{i}\right] \leqslant \exp \left(\frac{h^{2} \sum_{i=1}^{n} c_{i}^{2}}{8}\right)
$$

For Hoeffding's bound, this was easy, because $\Delta \mathbb{G}_{i}$ variables were independent. So, we did the following manipulation in the Hoeffding's bound
$\mathbb{E}\left[\exp \sum_{i=1}^{n} h \Delta \mathbb{G}_{i}\right]=\prod_{i=1}^{n} \mathbb{E}\left[\exp h \Delta \mathbb{G}_{i}\right]$

$$
\leqslant \prod_{i=1}^{n} \exp \left(\frac{h^{2} c_{i}^{2}}{8}\right)=\exp \left(\frac{h^{2} \sum_{i=1}^{n} c_{i}^{2}}{8}\right)
$$

Application of Hoeffding's Lemma in Azuma's InequalitylII

- However, we do not have the independence guarantee in martingale difference sequences. We need to proceed in an alternate manner. In the sequel, we prove the result for martingale difference sequences.
- Our goal is to upper-bound the quantity

$$
\mathbb{E}\left[\exp h \sum_{i=1}^{n} \Delta \mathbb{G}_{i}\right]
$$

- This expression is equivalent to

$$
\sum_{\omega_{1}, \ldots, \omega_{n}} \mathbb{P}\left[\Delta \mathbb{G}_{1}=\omega_{1}, \ldots, \Delta \mathbb{G}_{n}=\omega_{n}\right] \exp \left(h\left(\omega_{1}+\cdots+\omega_{n}\right)\right)
$$

Application of Hoeffding's Lemma in Azuma's InequalityIV

- By the chain rule, we can express it as

$$
\begin{gathered}
\sum_{\omega_{1}, \ldots, \omega_{n-1}} \mathbb{P}\left[\Delta \mathbb{G}_{1}=\omega_{1}, \ldots, \Delta \mathbb{G}_{n-1}=\omega_{n-1}\right] \exp \left(h\left(\omega_{1}+\cdots+\omega_{n-1}\right)\right) \\
\sum_{\omega_{n}} \mathbb{P}\left[\Delta \mathbb{G}_{n}=\omega_{n} \mid \Delta \mathbb{G}_{1}=\omega_{1}, \ldots, \Delta \mathbb{G}_{n-1}=\omega_{n-1}\right] \exp \left(h \omega_{n}\right)
\end{gathered}
$$

- Note that the random variable $\left(\Delta \mathbb{G}_{n}=\omega_{n} \mid \Delta \mathbb{G}_{1}=\omega_{1}, \ldots, \Delta \mathbb{G}_{n-1}=\omega_{n-1}\right)$ has mean 0 (because it is a martingale difference sequence) and the difference between the maximum and minimum values this random variable achieves is c_{n} (irrespective of the values of $\left.\omega_{1}, \ldots, \omega_{n-1}\right)$. We can apply Hoeffding's lemma on this variable. So, we get that the previous expression is

$$
\leqslant \sum_{\omega_{1}, \ldots, \omega_{n-1}} \mathbb{P}\left[\Delta \mathbb{G}_{1}=\omega_{1}, \ldots, \Delta \mathbb{G}_{n-1}=\omega_{n-1}\right] \exp \left(h\left(\omega_{1}+\cdots+\omega_{n-1}\right)\right) \exp \left(\frac{h^{2} c_{n}^{2}}{8}\right)
$$

Application of Hoeffding's Lemma in Azuma's InequalityV

- Now, we rearrange this expression to get $\exp \left(-\frac{h^{2} c_{n}^{2}}{8}\right)$ out of the summation. And, we can use induction on the remaining expression.
- As a consequence, we get the upper-bound

$$
\leqslant \prod_{i=1}^{n} \exp \left(h^{2} c_{i}^{2} / 8\right)
$$

This is exactly what we set out to prove initially.

