


Doob’s Martingale |

@ We prove that Doob's construction yields a martingale

@ Suppose Xi,...,X, are random variables over the sample
space Q1,...,Q, respectively

o Let X = (Xy,...,X,) be the random variable over
Q= Ql X X Qn

o Let {0,Q} = Fg C Fy C--- C F, be the natural filtration
associated with (Xy,...,X,)

@ Suppose f: Q — R be a function

@ For 0 </ < n, consider the function gj: Q — R defined as
follows

g,-(x) =E [f(Xl, e ,Xn)|f,'] (X)

Suppose (x1,...,xj) = (w1, ...,w;). Then, the function g;(x)
is the conditional expectation of f(y), for all y such that
(.yl)' . 'in) — (wla" . 7wi)-

Concentration



Doob's Martingale Il

o First observation

Observation

For 0 < i < n, the function g; is Fj-measurable.

This is easy to see because if Fj(x) = Fi(y), i.e., the first i
outcomes of x and y match, then we have g;(x) = gi(y).

@ Define the random variable G; = g;(X).
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Doob’s Martingale Il

Observations.

@ Observe that the random variable G; is F;-measurable
e Note that Gy = E [f(X)]
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Doob's Martingale IV

@ Crucial lemma

E [Git1lFi] (x) = (GilFi)(x)

The proof is on the next slide. Note that this result suffices to
show that (Gy,...,G,) is a martingale with respect to the
natural filtration {0, Q} = Fo C F1,C--- C Fy
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Doob's Martingale V

e Suppose (x1,...,x;) = (w1,...,w)
o Note that the RHS is (G;|F)(x) = E [f(ws, . .., wi, Xit1, - . -, Xp)]
o Note that the LHS is

Y PX=yXi=wr,...,Xi = w] gina(y)

yEQ

_Z Z X Y, 1+1:CU[+1|X1:(/J1,...,X _wl]gl+1(y)

YEQw;11€Qj 41

Z P [Xin1 = wina X1 = wi, ..., Xi = wj]

wit1€Qjq1
ZP X=y[Xi=wi,...,Xi = wi, Xij1 = wis1] giv1(y)
yeQ
= Z P [X,‘Jrl :w,-+1|X1 :wl,...,X,- :w,-]
w1 €N
E [f(wl, oo ,UJ,'+1,X,'+2, 500 ,Xn)]
=E [f(w1,...,w,-,X,-+1,...,X,,)] O
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Application of Hoeffding's Lemma in Azuma's Inequalityl

o Let (AGy,...,AG,) be a martingale difference sequence with
respect to a filtration {(),Q} = Fy C F1,C--- C Fy

o For1<i< nandxeQletS;, be the support of the
conditional distribution (AG;|F;_1)(x). Let a; and b; « be
the infimum and the supremum of the elements in S; ..
Suppose, there exists ¢; such that b; x — aj x < ¢;.

@ Our goal is to prove a crucial step in the proof of Azuma's
inequality that shows

n
2t2
P ZAG; > t| <exp <ng>
i—=1 >

i=1Ci
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Application of Hoeffding's Lemma in Azuma's Inequalityll

@ The proof is similar to the proof of the Hoeffding's bound,
except a crucial step. Our focus is that particular step. We
want to claim the following

n
R2STT 2
E epohA(G,- < exp (%1‘-})

i=1

For Hoeffding's bound, this was easy, because AG; variables
were independent. So, we did the following manipulation in
the Hoeffding's bound

n n
E |exp ) hAG;| =[] E[exp hAG]]
i=1 i=1

h2 2 h2 n 2
Hexp ( > = exp (zé_l i )
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Application of Hoeffding's Lemma in Azuma's Inequalityll|

@ However, we do not have the independence guarantee in
martingale difference sequences. We need to proceed in an
alternate manner. In the sequel, we prove the result for
martingale difference sequences.

@ Our goal is to upper-bound the quantity
n
E |exph»  AG;
i=1
@ This expression is equivalent to

Z P[AG; = wy,...,AG, = wy]exp(h(w1 +- - + wp))

Wi,..,Wn
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Application of Hoeffding's Lemma in Azuma's InequalitylV

@ By the chain rule, we can express it as

Z P [AGl =wi,...,AG,_1 = w,,_l] exp(h(wl e w,,_l))

Wi,---,Wn—1

Z]P’ [AG, = wn|AG1 = w1, ..., AGy_1 = wy_1] exp(hwn)

Wn

@ Note that the random variable
(AG, = wp|AGy = wy, ..., AG,_1 = wy_1) has mean 0
(because it is a martingale difference sequence) and the
difference between the maximum and minimum values this
random variable achieves is ¢, (irrespective of the values of
wi,...,wp—1). We can apply Hoeffding's lemma on this
variable. So, we get that the previous expression is

h2 2
< Z P[AG: = ws,...,AG,—1 = wa—1] exp(h(ws +- - + wn—1)) exp ( SC” >
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Application of Hoeffding's Lemma in Azuma's InequalityV/

2.2
@ Now, we rearrange this expression to get exp (—hgc"> out of

the summation. And, we can use induction on the remaining
expression.

@ As a consequence, we get the upper-bound
n
< [[en(t2c?/8)
i=1

This is exactly what we set out to prove initially.
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