## Lecture 12: Martingales and Azuma's Inequality



- This is a very informal treat of the concept of Martingales
- In particular, the inuitions are specific to discrete spaces
- $\bullet$  Interested readers are referred to study  $\sigma\textsc{-algebras}$  for a more formal treatment of this material

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Martingales
- Specific to Discrete Sample Spaces
- Specifically, Doob's Martingale
- Azuma's Inequality

• Let  $\Omega$  be a (discrete) sample space with probability distribution p

### Definition ( $\sigma$ -Field)

A  $\sigma\text{-filed}\ \mathcal{F}$  on  $\Omega$  is a collection of subsets of  $\Omega$  such that the following constraints are satisfied

- $\textcircled{0} \ \mathcal{F} \ \text{contains} \ \emptyset \ \text{and} \ \Omega, \ \text{and} \ \\$
- O  $\mathcal F$  is closed under unions, intersections, and complementation.

< 同 > < 三 > < 三 >

## Example

- For example  $\mathcal{F}_0 = \{\emptyset, \Omega\}$  is a  $\sigma$ -field
- Suppose  $\Omega = \{0,1\}^n$
- Let  $\mathcal{F}_1 = \mathcal{F}_0 \cup \{ 0\{0,1\}^{n-1}, 1\{0,1\}^{n-1} \}$ . Note that  $\mathcal{F}_1$  is also a  $\sigma$ -field
- Let F<sub>2</sub> = {S{0,1}<sup>n-2</sup>: S ⊆ {00,01,10,11}}. We use the convention that if S = Ø then S{0,1}<sup>n-2</sup> = Ø. So, F<sub>2</sub> has 16 elements, and F<sub>1</sub> ⊆ F<sub>2</sub>. It is easy to verify that F<sub>2</sub> is a σ-field
  In general

$$\mathcal{F}_k = \left\{ \begin{array}{l} S\{0,1\}^{n-k} \colon S \subseteq \{\omega_1, \dots, \omega_k \colon \omega_i \in \{0,1\}, \text{ for all } i \in \{1, \dots, k\}\} \right\}$$

- Let  $x \in \Omega$
- Consider a  $\sigma$ -field  $\mathcal F$  on  $\Omega$
- The smallest set in  $\mathcal{F}$  containing x is the intersection of all sets in  $\mathcal{F}$  that contain x. Formally, it is the following set

$$\mathcal{F}(x) := \bigcap_{\substack{S \in \mathcal{F} \\ x \in S}} S$$

 For example, let n = 5, x = 01001, and consider the σ-field *F*<sub>2</sub> on Ω. In this case, the smallest set *F*<sub>2</sub>(x) in *F*<sub>2</sub> that contains x is 01{0,1}<sup>n-2</sup>.

• Let  $f: \Omega \to \mathbb{R}$  be a function

#### Definition ( $\mathcal{F}$ -Measurable)

The function f is  $\mathcal{F}$ -measurable if, for all  $y \in \mathcal{F}(x)$ , we have f(x) = f(y), where  $\mathcal{F}(x)$  is the smallest subset in  $\mathcal{F}$  containing x

- For example, let n = 5 and consider the  $\sigma$ -field  $\mathcal{F}_2$  on  $\Omega$
- As we has seen, we have  $\mathcal{F}_2(x) = x_1 x_2 \{0, 1\}^{n-2}$ , where  $x_1$  and  $x_2$  are, respectively, the first and the second bits of x
- Let f(x) be the total number of 1s in the first two coordinates of x. This function f is  $\mathcal{F}_2$ -measurable
- Let f(x) be the expected value of 1s over all strings whose first two bits are  $x_1x_2$ . This function f is also  $\mathcal{F}_2$ -measurable
- Let f(x) be the total number of 1s in the first three bits of x. This function is <u>not</u>  $\mathcal{F}_2$ -measurable

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Let p be a probability distribution over the sample space Ω
- Let  $\mathcal{F}$  be a  $\sigma$ -field on  $\Omega$
- Let  $f: \Omega \to \mathbb{R}$  be a function
- We define the conditional expectation as a function  $\mathbb{E}\left[f|\mathcal{F}\right]: \Omega \to \mathbb{R}$  defined as follows

$$\mathbb{E}\left[f|\mathcal{F}\right](x) := \frac{1}{\sum_{y \in \mathcal{F}(x)} p(y)} \sum_{y \in \mathcal{F}(x)} f(y) p(y)$$

- We emphasize that f <u>need not be *F*-measurable</u> to define the expectation in this manner!
- Note that  $\mathbb{E}\left[f|\mathcal{F}\right](x) = \mathbb{E}\left[f|\mathcal{F}\right](y)$ , for all  $y \in \mathcal{F}(x)$

・ 同 ト ・ ヨ ト ・ ヨ ト

### • Let $\Omega$ be a sample space with probability distribution p

Definition (Filtration)

A sequence of  $\sigma$ -fields  $\mathcal{F}_0, \mathcal{F}_1, \ldots, \mathcal{F}_n$  is a filtration if

$$\{\emptyset,\Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n$$

★課▶ ★注▶ ★注▶

# Beginning of "Intuition Slides"

Concentration

(日) (日) (

- As time procresses, new information about the sample is revealed to us
- At time 1, we learn the value of  $\omega_1$  of the random variable  $\mathbb{X}_1$
- At time 2, we learn the value of  $\omega_2$  of the random variable  $\mathbb{X}_2$
- And so on. At time t, we learn the value  $\omega_t$  of the random variable  $\mathbb{X}_t$
- By the end of time *n*, we know the value  $\omega_n$  of the last random variable  $\mathbb{X}_n$
- At this point, f(X<sub>1</sub>,...,X<sub>n</sub>) can be calculated, where f is a function that we are interested in

・ロト ・部ト ・ヨト ・ヨト

- Balls and Bins. At time *i* we find out the bin  $\omega_i$  that the balls *i* goes into
- Coin tosses. At time *i* we find out the outsome  $\omega_i$  of the *i*-th coin toss
- Hypergeometric Series. At time *i* we find out the color ω<sub>i</sub> of the *i*-th ball drawn from the jar (where sampling is being carries out without replacement)
- Bounded Difference Function. At time *i* we find out the outcome ω<sub>i</sub> of the *i*-th variable of the input of the function *f*

- 4 同 2 4 日 2 4 日 2

- In a filtration, the  $\sigma$ -field  $\mathcal{F}_k$  represents the knowledge we have after knowing the outcomes  $(\omega_1, \ldots, \omega_k)$
- For instance, the  $\sigma\text{-field}\ \mathcal{F}_0$  represents "we know nothing about the sample"
- For instance, the  $\sigma$ -field  $\mathcal{F}_n$  represents "we know everything about the sample"

< ロ > ( 同 > ( 回 > ( 回 > ))

- Think of a rooted tree
- For every internal node, the outgoing edges represent the various possible outcomes in the next time step
- Leaves represent that the entire sample is already known
- The sequence of outcomes (ω<sub>1</sub>,..., ω<sub>n</sub>) represents a "root-to-leaf" path
- Consider a filtration {Ø, Ω} = F<sub>0</sub> ⊆ F<sub>1</sub> ⊆ · · · ⊆ F<sub>n</sub>. The set F<sub>k</sub>(x) corresponding to this root-to-leaf path is the depth-k node on this path

- Consider a filtration  $\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n$
- A random variable F<sub>k</sub> = f(X<sub>1</sub>,..., X<sub>n</sub>) will be measurable with respect to the σ-field F<sub>k</sub> if the value of f(X<sub>1</sub>,..., X<sub>n</sub>) depends only on (ω<sub>1</sub>,..., ω<sub>k</sub>)

# End of "Intuition Slides"



< □ > < □ > < □ >

### Definition (Martingale Sequence)

Let  $\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n$  be a filtration. The sequence  $(\mathbb{F}_1, \dots, \mathbb{F}_n)$  forms a martingale with respect to this filtration if **1**  $\mathbb{F}_i$  is  $\mathcal{F}_i$ -measurable, for  $1 \leq i \leq n$ , and **2**  $\mathbb{E}[\mathbb{F}_{t+1}|\mathcal{F}_t] = (\mathbb{F}_t|\mathcal{F}_t)$ , for  $0 \leq t < n$ .

- Note that given  $\mathcal{F}_t = (\omega_1, \dots, \omega_t)$ , the value of  $\mathbb{F}_t$  is fixed. So, we can write  $\mathbb{E} \left[ \mathbb{F}_t | \mathcal{F}_t \right] (x)$  in short as  $(\mathbb{F}_t | \mathcal{F}_t)(x)$
- Note that given  $\mathcal{F}_t = (\omega_1, \dots, \omega_t)$ , the outcome of  $\mathbb{F}_{t+1}$  is not yet fixed and is (possibly) random
- The second equation in the definition is an "equality of two functions." It means that E [F<sub>t+1</sub>|F<sub>t</sub>] (x) is equal to (F<sub>t</sub>|F<sub>t</sub>)(x) for all x ∈ Ω.

## Example

- Consider tossing a coin that gives head with probability p, and tails with probability (1 p), independently n times
- $\mathcal{F}_t$  is the outcome of the first t coin tosses
- Let  $\mathbb{S}_t$  represent the number of heads in the first t coin tosses
- Note that  $\mathbb{S}_t(x)$  is fixed given  $\mathcal{F}_t(x)$ , where  $x \in \Omega$
- Note that \$\$(\mathbb{S}\_{t+1}|\mathcal{F}\_t)(y) = (\mathbb{S}\_t|\mathcal{F}\_t)(y) + 1\$ with probability \$p\$ (for a random \$y\$ that is consistent with \$\mathcal{F}\_t(x)\$), else \$\$(\mathbb{S}\_{t+1}|\mathcal{F}\_t)(y) = (\mathbb{S}\_t|\mathcal{F}\_t)(y)\$
- Therefore,  $\mathbb{E}\left[\mathbb{S}_{t+1}|\mathcal{F}_t\right](x) = (\mathbb{S}_t|\mathcal{F}_t)(x) + p$
- So,  $(\mathbb{S}_1, \ldots, \mathbb{S}_n)$  is <u>not</u> a martingale sequence with respect to the filtration  $\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n$

### Example

- Let f be a function and we consider a filtration  $\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n$
- Let  $\mathbb{F}_t$  be the following random varible

$$\mathbb{F}_t(x) = \mathbb{E}\left[f(\omega_1,\ldots,\omega_t,\mathbb{X}_{t+1},\ldots,\mathbb{X}_n)\right],$$

where  $\omega_1, \ldots, \omega_t$  are the first *t* outcomes of  $x \in \Omega$ 

- First, prove that  $\mathbb{F}_t$  is  $\mathcal{F}_t$  measurable
- Next, prove that  $(\mathbb{F}_0, \ldots, \mathbb{F}_n)$  is a martingale with respect to the filtration  $\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n$

イロト イポト イヨト イヨト

- Let  $\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n$  be a filtration
- Let  $(\mathbb{F}_0, \ldots, \mathbb{F}_n)$  be a martingale difference sequence with respect to the filtration above
- Let  $\mathbb{Y}_0 = \mathbb{F}_0$ , and  $\mathbb{Y}_{t+1} = \mathbb{F}_{t+1} \mathbb{F}_t$ , for  $0 \leqslant t < n$
- Intuition:  $\mathbb{Y}_{t+1}$  measures the increase in  $\mathbb{Y}_{t+1}$  from  $\mathbb{Y}_t$
- Note that  $\mathbb{E}\left[\mathbb{Y}_{t+1}|\mathcal{F}_t\right] = 0$

< ロ > < 同 > < 回 > < 回 > < 回 > <

### Definition (Azuma's Inequality)

Suppose  $(\mathbb{Y}_0, \ldots, \mathbb{Y}_n)$  be a martingale difference sequence with respect to the filtration  $\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n$ . Suppose  $a_{t+1} \leq (\mathbb{Y}_{t+1}|\mathcal{F}_t)(x) \leq b_{t+1}$ , for  $0 \leq t < n$ . Then

$$\mathbb{P}\left[\sum_{i=1}^{n} \mathbb{Y}_{t} \ge t\right] \leqslant \exp\left(-\frac{2t^{2}}{\sum_{i=1}^{n}(b_{i}-a_{i})^{2}}\right)$$

Concentration

▲御▶ ▲臣▶ ★臣▶

## Proof Outline

• We are interested in computing

$$\mathbb{E}\left[\exp\left(h\sum_{i=1}^{n}\mathbb{Y}_{i}\right)\right] = \mathbb{E}\left[\exp\left(h\sum_{i=1}^{n-1}\mathbb{Y}_{i}\right)\exp(h\mathbb{Y}_{n})\right]$$
$$\leq EX\exp\left(h\sum_{i=1}^{n-1}\mathbb{Y}_{i}\right)\exp(p_{n}\mathrm{e}^{a_{n}}+q_{n}\mathrm{e}^{b_{n}}),$$

where  $p_n + q_n = 1$  and  $p_n a_n + q_n a_n = 0$ .

Inductively, we get

$$\mathbb{E}\left[\exp\left(h\sum_{i=1}^{n}\mathbb{Y}_{i}\right)\right] \leqslant \prod_{i=1}^{n}(p_{i}\mathrm{e}^{a_{i}}+q_{i}\mathrm{e}^{b_{i}})$$

• Rest of the proof is identical to the Hoeffding's Bound proof

Concentration

- The distribution  $\mathbb{Y}_{t+1}$  can depend on the outcomes  $(\omega_1, \dots, \omega_t)$
- But the only restrictions are that E [𝔅<sub>t+1</sub>|𝓕<sub>t</sub>] = 0 and the outcomes of (𝔅<sub>t+1</sub>|𝓕<sub>t</sub>)(𝔅) are in the range [𝔅<sub>t+1</sub>, 𝔅<sub>t+1</sub>]
- Prove: The Bounded difference inequality using Azuma's Inequality
- Prove: The concentration of the Hypergeometric distribution using Azuma's Inequality

ヘロト 人間ト ヘヨト ヘヨト