Lecture 12: Martingales and Azuma’s Inequality
Disclaimer

- This is a very informal treat of the concept of Martingales
- In particular, the intuitions are specific to discrete spaces
- Interested readers are referred to study σ-algebras for a more formal treatment of this material
In this Lecture

- Martingales
- Specific to Discrete Sample Spaces
- Specifically, Doob’s Martingale
- Azuma’s Inequality
Let Ω be a (discrete) sample space with probability distribution p

Definition (σ-Field)

A σ-field \mathcal{F} on Ω is a collection of subsets of Ω such that the following constraints are satisfied:

1. \mathcal{F} contains \emptyset and Ω, and
2. \mathcal{F} is closed under unions, intersections, and complementation.
For example $F_0 = \{\emptyset, \Omega\}$ is a σ-field.

Suppose $\Omega = \{0, 1\}^n$.

Let $F_1 = F_0 \cup \{0\{0, 1\}^{n-1}, 1\{0, 1\}^{n-1}\}$. Note that F_1 is also a σ-field.

Let $F_2 = \left\{ S\{0, 1\}^{n-2} : S \subseteq \{00, 01, 10, 11\} \right\}$. We use the convention that if $S = \emptyset$ then $S\{0, 1\}^{n-2} = \emptyset$. So, F_2 has 16 elements, and $F_1 \subseteq F_2$. It is easy to verify that F_2 is a σ-field.

In general

$F_k = \left\{ S\{0, 1\}^{n-k} : S \subseteq \{\omega_1, \ldots, \omega_k : \omega_i \in \{0, 1\}, \text{ for all } i \in \{1, \ldots, k\}\} \right\}$
Let $x \in \Omega$

Consider a σ-field \mathcal{F} on Ω

The smallest set in \mathcal{F} containing x is the intersection of all sets in \mathcal{F} that contain x. Formally, it is the following set

$$\mathcal{F}(x) := \bigcap_{S \in \mathcal{F} \text{ and } x \in S} S$$

For example, let $n = 5$, $x = 01001$, and consider the σ-field \mathcal{F}_2 on Ω. In this case, the smallest set $\mathcal{F}_2(x)$ in \mathcal{F}_2 that contains x is $01\{0, 1\}^{n-2}$.

Concentration
Let $f : \Omega \to \mathbb{R}$ be a function

Definition (\mathcal{F}-Measurable)

The function f is \mathcal{F}-measurable if, for all $y \in \mathcal{F}(x)$, we have $f(x) = f(y)$, where $\mathcal{F}(x)$ is the smallest subset in \mathcal{F} containing x.

For example, let $n = 5$ and consider the σ-field \mathcal{F}_2 on Ω.

As we has seen, we have $\mathcal{F}_2(x) = x_1x_2\{0, 1\}^{n-2}$, where x_1 and x_2 are, respectively, the first and the second bits of x.

Let $f(x)$ be the total number of 1s in the first two coordinates of x. This function f is \mathcal{F}_2-measurable.

Let $f(x)$ be the expected value of 1s over all strings whose first two bits are x_1x_2. This function f is also \mathcal{F}_2-measurable.

Let $f(x)$ be the total number of 1s in the first three bits of x. This function is **not** \mathcal{F}_2-measurable.
Let p be a probability distribution over the sample space Ω
Let F be a σ-field on Ω
Let $f : \Omega \to \mathbb{R}$ be a function
We define the conditional expectation as a function $E[f|F] : \Omega \to \mathbb{R}$ defined as follows
\[
E[f|F](x) := \frac{1}{\sum_{y \in F(x)} p(y)} \sum_{y \in F(x)} f(y)p(y)
\]
We emphasize that f need not be F-measurable to define the expectation in this manner!
Note that $E[f|F](x) = E[f|F](y)$, for all $y \in F(x)$
Filtration

Let Ω be a sample space with probability distribution p.

Definition (Filtration)

A sequence of σ-fields $\mathcal{F}_0, \mathcal{F}_1, \ldots, \mathcal{F}_n$ is a filtration if

$$\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n$$
Beginning of “Intuition Slides”
As time processes, new information about the sample is revealed to us

- At time 1, we learn the value of ω_1 of the random variable X_1
- At time 2, we learn the value of ω_2 of the random variable X_2
- And so on. At time t, we learn the value ω_t of the random variable X_t
- By the end of time n, we know the value ω_n of the last random variable X_n
- At this point, $f(X_1, \ldots, X_n)$ can be calculated, where f is a function that we are interested in
Examples

- Balls and Bins. At time i we find out the bin ω_i that the ball i goes into.
- Coin tosses. At time i we find out the outcome ω_i of the i-th coin toss.
- Hypergeometric Series. At time i we find out the color ω_i of the i-th ball drawn from the jar (where sampling is being carried out without replacement).
- Bounded Difference Function. At time i we find out the outcome ω_i of the i-th variable of the input of the function f.

Concentration
In a filtration, the σ-field \mathcal{F}_k represents the knowledge we have after knowing the outcomes $(\omega_1, \ldots, \omega_k)$.

For instance, the σ-field \mathcal{F}_0 represents “we know nothing about the sample”.

For instance, the σ-field \mathcal{F}_n represents “we know everything about the sample”.
Tree Representation

- Think of a rooted tree
- For every internal node, the outgoing edges represent the various possible outcomes in the next time step
- Leaves represent that the entire sample is already known
- The sequence of outcomes \((\omega_1, \ldots, \omega_n)\) represents a “root-to-leaf” path
- Consider a filtration \(\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n\). The set \(\mathcal{F}_k(x)\) corresponding to this root-to-leaf path is the depth-\(k\) node on this path
Consider a filtration \(\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n \)

A random variable \(\mathcal{F}_k = f(X_1, \ldots, X_n) \) will be measurable with respect to the \(\sigma \)-field \(\mathcal{F}_k \) if the value of \(f(X_1, \ldots, X_n) \) depends only on \((\omega_1, \ldots, \omega_k)\)
End of “Intuition Slides”
Definition (Martingale Sequence)

Let \(\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n \) be a filtration. The sequence \((\mathcal{F}_1, \ldots, \mathcal{F}_n)\) forms a martingale with respect to this filtration if

1. \(\mathcal{F}_i \) is \(\mathcal{F}_i \)-measurable, for \(1 \leq i \leq n \), and
2. \(\mathbb{E} [\mathcal{F}_{t+1}|\mathcal{F}_t] = (\mathcal{F}_t|\mathcal{F}_t), \) for \(0 \leq t < n \).

Note that given \(\mathcal{F}_t = (\omega_1, \ldots, \omega_t) \), the value of \(\mathcal{F}_t \) is fixed. So, we can write \(\mathbb{E} [\mathcal{F}_t|\mathcal{F}_t] (x) \) in short as \((\mathcal{F}_t|\mathcal{F}_t)(x) \).

Note that given \(\mathcal{F}_t = (\omega_1, \ldots, \omega_t) \), the outcome of \(\mathcal{F}_{t+1} \) is not yet fixed and is (possibly) random.

The second equation in the definition is an "equality of two functions." It means that \(\mathbb{E} [\mathcal{F}_{t+1}|\mathcal{F}_t] (x) \) is equal to \((\mathcal{F}_t|\mathcal{F}_t)(x) \) for all \(x \in \Omega \).
Consider tossing a coin that gives head with probability p, and tails with probability $(1 - p)$, independently n times.

\mathcal{F}_t is the outcome of the first t coin tosses.

Let S_t represent the number of heads in the first t coin tosses.

Note that $S_t(x)$ is fixed given $\mathcal{F}_t(x)$, where $x \in \Omega$.

Note that $(S_{t+1}|\mathcal{F}_t)(y) = (S_t|\mathcal{F}_t)(y) + 1$ with probability p (for a random y that is consistent with $\mathcal{F}_t(x)$), else $(S_{t+1}|\mathcal{F}_t)(y) = (S_t|\mathcal{F}_t)(y)$.

Therefore, $\mathbb{E}[S_{t+1}|\mathcal{F}_t](x) = (S_t|\mathcal{F}_t)(x) + p$.

So, (S_1, \ldots, S_n) is not a martingale sequence with respect to the filtration $\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n$.

Concentration
Example

Let f be a function and we consider a filtration
\[\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n \]

Let \mathbb{F}_t be the following random variable
\[
\mathbb{F}_t(x) = \mathbb{E}\left[f(\omega_1, \ldots, \omega_t, X_{t+1}, \ldots, X_n) \right],
\]
where $\omega_1, \ldots, \omega_t$ are the first t outcomes of $x \in \Omega$

First, prove that \mathbb{F}_t is \mathcal{F}_t measurable

Next, prove that $(\mathbb{F}_0, \ldots, \mathbb{F}_n)$ is a martingale with respect to the filtration \[\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n \]
Martingale Difference Sequence

- Let \(\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n \) be a filtration.
- Let \((\mathcal{F}_0, \ldots, \mathcal{F}_n)\) be a martingale difference sequence with respect to the filtration above.
- Let \(Y_0 = \mathcal{F}_0 \), and \(Y_{t+1} = \mathcal{F}_{t+1} - \mathcal{F}_t \), for \(0 \leq t < n \).
- Intuition: \(Y_{t+1} \) measures the increase in \(Y_{t+1} \) from \(Y_t \).
- Note that \(\mathbb{E} [Y_{t+1} | \mathcal{F}_t] = 0 \).
Azuma’s Inequality

Definition (Azuma’s Inequality)

Suppose \((Y_0, \ldots, Y_n)\) be a martingale difference sequence with respect to the filtration \(\emptyset, \Omega = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n\). Suppose \(a_{t+1} \leq (Y_{t+1} | \mathcal{F}_t)(x) \leq b_{t+1}\), for \(0 \leq t < n\). Then

\[
\mathbb{P} \left[\sum_{i=1}^{n} Y_t \geq t \right] \leq \exp \left(- \frac{2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2} \right)
\]
Proof Outline

- We are interested in computing
 \[
 E \left[\exp \left(h \sum_{i=1}^{n} Y_i \right) \right] = E \left[\exp \left(h \sum_{i=1}^{n-1} Y_i \right) \exp(hY_n) \right] \leq EX \exp \left(h \sum_{i=1}^{n-1} Y_i \right) \exp(p_n e^{a_n} + q_n e^{b_n}),
 \]

 where \(p_n + q_n = 1 \) and \(p_n a_n + q_n a_n = 0 \).
- Inductively, we get
 \[
 E \left[\exp \left(h \sum_{i=1}^{n} Y_i \right) \right] \leq \prod_{i=1}^{n} (p_i e^{a_i} + q_i e^{b_i})
 \]
- Rest of the proof is identical to the Hoeffding’s Bound proof
The distribution Y_{t+1} can depend on the outcomes $(ω_1, . . . , ω_t)$

But the only restrictions are that $E[Y_{t+1} | F_t] = 0$ and the outcomes of $(Y_{t+1} | F_t)(x)$ are in the range $[a_{t+1}, b_{t+1}]$

Prove: The Bounded difference inequality using Azuma’s Inequality

Prove: The concentration of the Hypergeometric distribution using Azuma’s Inequality