Lecture 11: Talagrand Inequality and Applications

Overview

- Today we shall see (without proof) a concentration inequality called the "Talagrand Inequality"
- This result shall help us prove concentration of a large class of problems around its "median"
- As an application, we shall see a concentration result for the longest increasing subsequence

Convex Distance I

- Recall the definition of the Hamming distance between two elements $x, y \in \Omega:=\Omega_{1} \times \cdots \times \Omega_{n}$

$$
\left|\left\{i \in[n]: x_{i} \neq y_{i}\right\}\right|
$$

- Intuitively, we count " 1 " for every index i where x_{i} and y_{i} are different
- We can consider a weighted variant of this distance, where every index i has its own weight α_{i}
- Before, we proceed to developing this new notion of distance, let us first normalize the Hamming distance. Consider the following redefinition. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right)$ We define

$$
d_{H}(x, y)=\sum_{i \in[n]: x_{i} \neq y_{i}} \alpha_{i}
$$

- For sake of completeness, we write down the inequality that we saw on Hamming distance in its new form

$$
\mathbb{P}[\mathbb{X} \in A] \mathbb{P}\left[d_{H}(\mathbb{X}, A) \geqslant t\right] \leqslant \exp \left(-t^{2} / 2\right)
$$

- Now, we generalize the notion of distance to any vector α with norm 1. That is, consider $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ such that
- $\alpha_{1}, \ldots, \alpha_{n} \geqslant 0$, and
- $\sum_{i=1}^{n} \alpha_{i}^{2}=1$.
- We define the following distance between $x, y \in \Omega$ with respect to α as follows

$$
d_{\alpha}(x, y):=\sum_{i \in[n]: x_{i} \neq y_{i}} \alpha_{i}
$$

Convex Distance III

- Now, for a pair x, y, we can consider the "worst direction" α that witnesses the highest distance

Definition (Convex Distance)

For $x, y \in \Omega$, we define the convex distance between x and y as follows

$$
d_{T}(x, y)=\sup _{\alpha:\|\alpha\|_{2}=1} d_{\alpha}(x, y)
$$

- Similar to the case of Hamming distance, we can define the distance of $x \in \Omega$ from a set $A \subseteq \Omega$

$$
d_{T}(x, A)=\min _{y \in A} d_{T}(x, y)
$$

So, $d_{T}(x, A) \geqslant t$ implies that $d_{T}(x, y) \geqslant t$, for all $y \in A$. Further,

- Let $\mathbb{X}=\left(\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}\right)$ be a random variable over Ω, such that each \mathbb{X}_{i} is independent of the others
- Let $f: \Omega \rightarrow \mathbb{R}$
- Talagrand Inequality states the following

Theorem (Talagrand Inequality)

For any $A \subset \Omega$, we have

$$
\mathbb{P}[\mathbb{X} \in A] \mathbb{P}\left[d_{T}(\mathbb{X}, A) \geqslant t\right] \leqslant \exp \left(-t^{2} / 4\right)
$$

Application to Longest Increasing Subsequence I

- Suppose $\mathbb{X}=\left(\mathbb{X}_{1}, \ldots \mathbb{X}_{n}\right)$, where each \mathbb{X}_{i} is independent and uniformly distributed over $\Omega_{i}=[0,1]$
- We are interested in $f(\mathbb{X})$, the length of the longest increasing subsequence in $\left(\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}\right)$
- Observation. Consider any $x \in \Omega$. If $f(x)=k$, then there is a set $K_{x}=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq[n]$ such that K_{x} denotes the indices of the longest increasing subsequence in x
- Observation. Consider any $y \in \Omega$. Note that if y agrees with x at all the indices in K_{x}, then we have $f(y) \geqslant f(x)$ (it is possible that y has a longer increasing subsequence, but, definitely, it will not be shorter than the length of the longest increasing subsequence of x)

Application to Longest Increasing Subsequence II

- Observation. Consider any $y \in \Omega$. Note that if y agrees with x at all the indices in K_{x} except at ℓ indices, then we have $f(y) \geqslant f(x)-\ell$. Formally, we can write this as follows

$$
f(y) \geqslant f(x)-\left|\left\{i \in K_{x}: x_{i} \neq y_{i}\right\}\right|
$$

- Let us fix $\alpha_{x}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ such that

$$
\alpha_{i}= \begin{cases}\frac{1}{\sqrt{K_{x}}}, & \text { if } i \in K_{x} \\ 0, & \text { otherwise }\end{cases}
$$

Note that $\left|K_{x}\right|=f(x)$. So, we can conclude that

$$
f(y) \geqslant f(x)-\sqrt{f(x)} d_{\alpha_{x}}(x, y)
$$

Application to Longest Increasing Subsequence III

- Rearranging, we get that

$$
d_{\alpha_{x}}(x, y) \geqslant \frac{f(x)-f(y)}{\sqrt{f(x)}}
$$

- Since $d_{T}(\cdot, \cdot)$ is a supremum of $d_{\alpha}(\cdot, \cdot)$ over all α with norm-1, we get that

$$
d_{T}(x, y) \geqslant \frac{f(x)-f(y)}{\sqrt{f(x)}}
$$

- Define $A_{a}=\{y: f(y) \leqslant a\}$. So, for all $y \in A_{a}$, we get

$$
d_{T}(x, y) \geqslant \frac{f(x)-a}{\sqrt{f(x)}}
$$

- Since, the inequality holds for all $y \in A_{a}$, we can conclude that

$$
d_{T}\left(x, A_{a}\right) \geqslant \frac{f(x)-a}{\sqrt{f(x)}}
$$

Application to Longest Increasing Subsequence IV

- Observation. If $f(x) \geqslant a+t$, then

$$
d_{T}\left(x, A_{a}\right) \geqslant \frac{t}{\sqrt{a+t}}
$$

- So, we have

$$
\mathbb{P}[f(\mathbb{X}) \geqslant a+t] \leqslant \mathbb{P}\left[d_{t}\left(\mathbb{X}, A_{a}\right) \geqslant \frac{t}{\sqrt{a+t}}\right]
$$

- Multiplying both sides by $\mathbb{P}\left[\mathbb{X} \in A_{a}\right]$, we get

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{X} \in A_{a}\right] \mathbb{P}[f(\mathbb{X}) \geqslant a+t] & \leqslant \mathbb{P}\left[\mathbb{X} \in A_{a}\right] \mathbb{P}\left[d_{t}\left(\mathbb{X}, A_{a}\right) \geqslant \frac{t}{\sqrt{a+t}}\right] \\
& \leqslant \exp \left(-\frac{t^{2}}{4(a+t)}\right)
\end{aligned}
$$

- Let m be the median of the random variable $f(\mathbb{X})$.

Application to Longest Increasing Subsequence V

- Suppose we use $a=m$. Then, we have $\mathbb{P}\left[\mathbb{X} \in A_{a}\right] \geqslant 1 / 2$. Therefore, we conclude that

$$
\mathbb{P}[f(\mathbb{X}) \geqslant m+t] \leqslant 2 \exp \left(-\frac{t^{2}}{4(m+t)}\right)
$$

- Suppose we use $a+t=m$. Then, we have $\mathbb{P}[f(\mathbb{X}) \geqslant a+t] \geqslant 1 / 2$. Then, we have

$$
\mathbb{P}\left[\mathbb{X} \in A_{a}\right]=\mathbb{P}[f(\mathbb{X}) \leqslant m-t] \leqslant 2 \exp \left(-\frac{t^{2}}{4 m}\right)
$$

Configuration Function

- The approach of applying the Talagrand inequality to the problem of longest increasing subsequence can be generalized to several problems.
- Consider the definition of c-configuration functions

Definition (Configuration Functions)

A function f is a c-configuration function, if for every x, y, there exists $\alpha_{x, y}$ such that the following holds.

$$
f(y) \geqslant f(x)-\sqrt{c \cdot f(x)} d_{\alpha_{x, y}}(x, y)
$$

- Note that the longest increases subsequence defines $f(\cdot)$ that is 1 -configuration function. The derivation used above can be identically used for c-configuration functions.

