


Overview

@ Today we shall see a result referred to as the “Independent
Bounded Differences Inequality”

@ We shall not see the proof of this result today. In the future,
when we prove the “Azuma’s inequality,” the proof for this
theorem shall follow as a corollary

@ Today, we shall see how a large class of concentration results
follow as a consequence of this result. In fact, one such
consequence shall look very similar to the “Talagrand
Inequality,” which we shall study in the future
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Independent Bounded Differences Inequality |

o Let Q4,...,Q, be sample spaces
o Define Q:=Q; x--- xQ,
o letf:Q—R

Let X = (Xy,...,X,) be a random variable such that each X;
is independent and X; is a random variable over the sample
space £;
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Independent Bounded Differences Inequality |l

Definition (Bounded Differences)

A function f: Q — R has bounded differences if for all x,x" € Q,
i € [n], and x and x’ differ only at the i-th coordinate, the output

of the function |f(x) — f(x)| < ;.
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Independent Bounded Differences Inequality Il

We state the following bound without proof

Theorem (Bounded Difference Inequality)

P [f(X) ~E [f(X)] > t] <exp 2t2/zn:c,?)

Applying the same theorem to —f, we can deduce that
n
P [f(X) ~E[f(X)] < —t] <ep | 202/ ¢
i=1

Intuitively, if all ¢; = 1, the random variable 7(X) is concentrated
around its expected value E [f(X)] within a radius of \/n
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Examples

Note that the Chernoff-Hoeffding's bound is a corollary of this
theorem

Let G, be a random graph over n vertices, where each edge
is included int he graph independently with probability p. Note
that we have m random variables, one indicator variable for
each edge of the graph. Note that the chromatic number of
the graph is a function with bounded difference

Several graph properties like number of connected components
Longest increasing subsequence
Max load in ball-and-bins experiments

What about Max load in the power-of-two-choices?

Concentration



Applicability and Meaningfulness of the Bounds

@ Although the theorem is applicable, the bound that it produces
might not be meaningful

@ The bound says that the probability mass is concentrated
within & /n on the expected value E [f(X)]

o If the expected value E [f(X)] is w(y/n) then the theorem
gives a meaningful bound.

o However, if E [f(X)] is O(y/n) then the theorem does not give
a meaningful bound. For example, the longest increasing
subsequence, max-load in balls-and-bins
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Hamming Distance

Next, we shall see a powerful application of the independent
bounded difference inequality. First, let us introduce the definition
of Hamming distance.

Definition (Hamming Distance)

Let x,x" € Q:=Qq x--- x Q,. We define

dy(x,x') == ‘{ie [n]: xi #X,/}‘

@ The Hamming distance counts the number of indices where x
and x’ differ

o Let AC Q and dy(x,A) := minycs dp(x,y).

Definition
The set Ay is defined as

Ay = {x € Q: dy(x,A) < k}

Concentration



Distance from Dense Sets

Let A C Q.

P[X € Al P [du(X, A) > t] < exp (—t2/2n>

Intuition
@ Suppose P[X € A] = 1/2, then we have

PIX € Ar1] >1— 2exp <—t2/2n)

That is, nearly all points lie within t ~ /n distance from the
dense set A

o Note that this result holds for all dense sets A

Concentration



Proof based on the Bounded Difference Inequality |

e Note that dy(-, A) is a bounded difference function with
¢i=1, forie|n]
For p:=E [dn(X, A)], consider the inequality

P [du(X, A) — < —t] < exp(—2t2/n)

Substitute t = p, and we get
P [dh(X, A) < 0] < exp(—242/n)

Note that

P [dH(X,A) < 0] =P[X € A] =:v

Now, we can relate the average p and the density v:

v < exp(—242/n) == < ,/g log(1/v)
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Proof based on the Bounded Difference Inequality |l

@ Now, we apply the other inequality
P [du(X,A) — 1 > t] < exp (—2t2/n>
@ By change of variables, we have

P [d(X, A) > t] < exp (—2(t — /)
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Proof based on the Bounded Difference Inequality Il

@ Case 1: t > 2u. For this case, we conclude that
t/2 < (t — mu). So, we have:

P [dn(X, A) > t] < exp (-2(1: - u)2/n> < (—t2/2n)
@ Case 2: 0 < t < 2u. For this case, we conclude that
P[X € A] < exp (—2u2/n) < exp(—t2/2n)
@ Therefore, the two cases imply that
min {IP’ [X € AP [du(X, A) > t}} < exp(—t2/2n)
@ This inequality implies that, for all t, we have

P[X € A]- P [dy(X,A) > t] < exp(—t*/2n)
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An Application

(Slightly weaker-version of) Chernoff-bound for B(n, 1/2)
e Consider a uniform distribution over Q = {0,1}"
@ Let A be the set of all binary strings that have at most n/2 1s
@ A string x with dy(x, A) > t is equivalent to x having
(n/2) +t 1s
@ So, the probability that a uniformly sampled binary string has
(n/2) + t 1s is at most exp(—t2/2n)
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