


Recall: Chernoff |

@ Let us recall the Chernoff Bound

@ Let X be a random variable over the samples space {0, 1} such
that P[X=1]=pand P[X=0]=1—-p

o Consider n independent samples of the distribution X. This is
represented by the random variable (X(1), X() . x(m),

o Our object of study is: Sp, = 3.7, X0,

o Note that E [S, ;] = np, by the linearity of expectation

o Chernoff bound states that S, ,, is significantly larger than the
expected values only with an exponentially small probability

P [Sn,p —E[Shp] = A] < exp <—nDKL (p + %, p)) < exp(—2A2/n)

o Intuitively, if A = O(y/n), then it is highly likely that
P [Sn,p —E [Sn,p] > A} is small (it can be any small
constant). Let us call this the “radius of concentration.”

Concentration



Recall: Chernoff Il

o Note that (1) this bound is independent of E [S, ], and (2)
the Chernoff bound hold even when p is a function of n itself.
An Example. Suppose p = n~1/3. Then, we have
E [Shp] = np = n?/3. For this case, the radius of
concentration is again A = O(y/n).

e We say that the Chernoff bound is “meaningful /useful” when
the radius of concentration is a o(E [Sy,]).

An Example. Suppose p = n=2/3. In this case, we have
E [Shp| = np = n/3. The radius of concentration is O(+y/n),
which is not o(E [Sn’p]).

Concentration



Deviation below the Expectation |

@ Chernoff bound states that the probability that S, , exceeds
E [Shp| by A is at most exp(—2A2/n)

@ How can we state that it is also unlikely that S, , is lower than
E [Shp] by A is small?
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Deviation below the Expectation Il

@ We are interested in
P [Smp —E[Snp] < —A] <7

@ Let us introduce the random variable Y = 1 — X. Note that
P[Y=1=1—-pand P[Y =0] = p.

o Let Tp1_p=> 1, Y0

o Note that E [Tp1—p] = n(1— p)

@ We can now use Chernoff bound in the following manner

P [Snp —E[Snp] < —A] =P[(n=8np) = (1= E[Sn,)] > 4]

=P|Tn1p—E[Tn1-p] > 4]

A

<exp <_nDKL <1 -p+—1- P>>
n

< exp (—2A2/n>

Concentration



Hoeffding Bound |

Let (X1,Xy,...,X,) be independent random variables such
that X is over the sample space [a1, bj]

We study the random variable S, =), _; Xj
@ We are interested in the probability

P[Sh—E[S)] > A] <7

Think: Without loss of generality we can assume that
E [X,] =0. Why?
Hoeffding's bound states that

AZ
P[5, — E[S:] > A] < xp (—w)
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@ Think: The following two results suffice to prove the
Hoeffding's bound using the technique that we used to prove
the Chernoff bound.

Let X be a random variable over the sample space [a, b] such that

E[X] = 0. For any h > 0, we have

E [exp(hX)] < b b exp(ha) — 5 2 exp(hb)

—a —a

Lemma (Hoeffding's Lemma)

For a < 0 < b, we have

a
h _
b_aexp( a) -

— exp(hb) < exp(H(b — 2)%/8)
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@ Next, we prove these two lemmas
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Proof of the First Lemma |

Goal. Let X be a random variable over the sample space [a, b]
such that E[X] = 0. For any h > 0, we have

a

E [exp(hX)] < 5 b exp(ha) — 5 exp(hb)

— da — 4a

@ In the lecture, we proved the underlying intuition for this
result. Here, we discuss how to formalize that proof intuition.

Consider x € [a, b] (remember a is a negative real number)

We want to compute p and g such that pa+ gb = x and

b—x x—a

p+ g =1. Note that p = 7=> and g = ;=3 is the solution.

By Jensen’s we have

pexp(ha) + qexp(hb) > exp(p - ha+ q - hb) = exp(hx)
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Proof of the First Lemma I

@ Therefore, we can write the following inequality

b: ; exp(ha) + A : j exp(hb) > exp(hX)

@ Taking expectations both sides, we get

b—-X X -
exp(ha) + b 2

— —exp(hb)| 2 E [exp(hX)]
E[X]—a

exp(ha) =+ ﬁ

exp(hb) = E [exp(hX)]

a
= o exp(ha) — P exp(hb) = E [exp(hX)]

And, we are done!
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Proof of the Second Lemma (Hoeffding's Lemma) |

o Goal. For a < 0 < b, we have

?_ exp(hb) < exp(h?(b — a)/8)

ha) —
b—anp( 2) b—a

Or, equivalently

In (bf a exp(ha) — b i p exp(hb)) < h(b—a)?/8

@ We shall use the following variable substitution u = h(b — a)
o Consider the following simplification

exp(ha) — exp(hb)

a
b—a b—a
=exp(ha) < b 2

b—a b-a

exo(t(b - 2) )
= exp(ha) (1 + 3 i - bj S exp(h(b — a)))
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Proof of the Second Lemma (Hoeffding's Lemma) ||

e We use the following substitution: § = ;=%. Substituting the
value of u, we get 0 = (—a)/(u/h) <~ ah = —0u.
@ So, we get

exp(ha) (1 +5 2 -5 2 ~ exp(h(b — a))) = exp(—0u)(1 — 0 + O exp(u))

@ Taking In, our goal is to prove the following statement
fo(u) ;== — Ou+In(1 — 0+ Aexp(u)) < v?/8

@ We shall use Taylor's remainder theorem on fy(u)
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Proof of the Second Lemma (Hoeffding's Lemma) Il

o Note that

) = 000010+ Do)

0 exp(u)
/ —
fo(u) = =0+ T exp(u)
2
fy'(u) 0 exp(u) 0" exp(2u)

T 1-0+0ep(u) (1 0+ hexp(u)’
= t(l—t) < 1/4¢

6 exp(u)

where t = 5 oy
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Proof of the Second Lemma (Hoeffding's Lemma) IV

@ So, we get
fo(u) = f5(0) + f5(0)u + f'(v)u?/2,
for some v € [0, u]. That is,
fa(u) = 0+ Ou + ' (v)u?/2 < u?/8

This step completes the proof of the lemma.

Concentration



Extra-credit Problem

We ended the lecture with a discussion of providing a
alternate/tighter proof for Hoeffding's Lemma.
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