## Lecture 09: Hoeffding Bound Proof

## Recall: Chernoff I

- Let us recall the Chernoff Bound
- Let $\mathbb{X}$ be a random variable over the samples space $\{0,1\}$ such that $\mathbb{P}[\mathbb{X}=1]=p$ and $\mathbb{P}[\mathbb{X}=0]=1-p$
- Consider $n$ independent samples of the distribution $\mathbb{X}$. This is represented by the random variable $\left(\mathbb{X}^{(1)}, \mathbb{X}^{(2)}, \ldots, \mathbb{X}^{(n)}\right)$.
- Our object of study is: $\mathbb{S}_{n, p}=\sum_{i=1}^{n} \mathbb{X}^{(i)}$.
- Note that $\mathbb{E}\left[\mathbb{S}_{n, p}\right]=n p$, by the linearity of expectation
- Chernoff bound states that $\mathbb{S}_{n, p}$ is significantly larger than the expected values only with an exponentially small probability

$$
\mathbb{P}\left[\mathbb{S}_{n, p}-\mathbb{E}\left[\mathbb{S}_{n, p}\right] \geqslant \Delta\right] \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}\left(p+\frac{\Delta}{n}, p\right)\right) \leqslant \exp \left(-2 \Delta^{2} / n\right)
$$

- Intuitively, if $\Delta=O(\sqrt{n})$, then it is highly likely that $\mathbb{P}\left[\mathbb{S}_{n, p}-\mathbb{E}\left[\mathbb{S}_{n, p}\right] \geqslant \Delta\right]$ is small (it can be any small constant). Let us call this the "radius of concentration."


## Recall: Chernoff II

- Note that (1) this bound is independent of $\mathbb{E}\left[\mathbb{S}_{n, p}\right]$, and (2) the Chernoff bound hold even when $p$ is a function of $n$ itself. An Example. Suppose $p=n^{-1 / 3}$. Then, we have $\mathbb{E}\left[\mathbb{S}_{n, p}\right]=n p=n^{2 / 3}$. For this case, the radius of concentration is again $\Delta=O(\sqrt{n})$.
- We say that the Chernoff bound is "meaningful/useful" when the radius of concentration is a $o\left(\mathbb{E}\left[\mathbb{S}_{n, p}\right]\right)$.
An Example. Suppose $p=n^{-2 / 3}$. In this case, we have $\mathbb{E}\left[\mathbb{S}_{n, p}\right]=n p=n^{1 / 3}$. The radius of concentration is $O(\sqrt{n})$, which is not $o\left(\mathbb{E}\left[\mathbb{S}_{n, p}\right]\right)$.


## Deviation below the Expectation I

- Chernoff bound states that the probability that $\mathbb{S}_{n, p}$ exceeds $\mathbb{E}\left[\mathbb{S}_{n, p}\right]$ by $\Delta$ is at most $\exp \left(-2 \Delta^{2} / n\right)$
- How can we state that it is also unlikely that $\mathbb{S}_{n, p}$ is lower than $\mathbb{E}\left[\mathbb{S}_{n, p}\right]$ by $\Delta$ is small?


## Deviation below the Expectation II

- We are interested in

$$
\mathbb{P}\left[\mathbb{S}_{n, p}-\mathbb{E}\left[\mathbb{S}_{n, p}\right] \leqslant-\Delta\right] \leqslant ?
$$

- Let us introduce the random variable $\mathbb{Y}=1-\mathbb{X}$. Note that $\mathbb{P}[\mathbb{Y}=1]=1-p$ and $\mathbb{P}[\mathbb{Y}=0]=p$.
- Let $\mathbb{T}_{n, 1-p}=\sum_{i=1}^{n} \mathbb{Y}^{(i)}$.
- Note that $\mathbb{E}\left[\mathbb{T}_{n, 1-p}\right]=n(1-p)$
- We can now use Chernoff bound in the following manner

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{S}_{n, p}-\mathbb{E}\left[\mathbb{S}_{n, p}\right] \leqslant-\Delta\right] & =\mathbb{P}\left[\left(n-\mathbb{S}_{n, p}\right)-\left(n-\mathbb{E}\left[\mathbb{S}_{n, p}\right)\right] \geqslant \Delta\right] \\
& =\mathbb{P}\left[\mathbb{T}_{n, 1-p}-\mathbb{E}\left[\mathbb{T}_{n, 1-p}\right] \geqslant \Delta\right] \\
& \leqslant \exp \left(-n \mathrm{D}_{\mathrm{KL}}\left(1-p+\frac{\Delta}{n}, 1-p\right)\right) \\
& \leqslant \exp \left(-2 \Delta^{2} / n\right)
\end{aligned}
$$

## Hoeffding Bound I

- Let $\left(\mathbb{X}_{1}, \mathbb{X}_{2}, \ldots, \mathbb{X}_{n}\right)$ be independent random variables such that $\mathbb{X}_{i}$ is over the sample space $\left[a_{1}, b_{i}\right.$ ]
- We study the random variable $\mathbb{S}_{n}=\sum_{i=1} \mathbb{X}_{i}$
- We are interested in the probability

$$
\mathbb{P}\left[\mathbb{S}_{n}-\mathbb{E}\left[\mathbb{S}_{n}\right] \geqslant \Delta\right] \leqslant ?
$$

- Think: Without loss of generality we can assume that $\mathbb{E}\left[\mathbb{X}_{i}\right]=0$. Why?
- Hoeffding's bound states that

$$
\mathbb{P}\left[\mathbb{S}_{n}-\mathbb{E}\left[\mathbb{S}_{n}\right] \geqslant \Delta\right] \leqslant \exp \left(-\frac{\Delta^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

## Hoeffding Bound II

- Think: The following two results suffice to prove the Hoeffding's bound using the technique that we used to prove the Chernoff bound.


## Lemma

Let $\mathbb{X}$ be a random variable over the sample space $[a, b]$ such that $\mathbb{E}[\mathbb{X}]=0$. For any $h>0$, we have

$$
\mathbb{E}[\exp (h \mathbb{X})] \leqslant \frac{b}{b-a} \exp (h a)-\frac{a}{b-a} \exp (h b)
$$

Lemma (Hoeffding's Lemma)
For $a<0<b$, we have

$$
\frac{b}{b-a} \exp (h a)-\frac{a}{b-a} \exp (h b) \leqslant \exp \left(h^{2}(b-a)^{2} / 8\right)
$$

## Hoeffding Bound III

- Next, we prove these two lemmas
- Goal. Let $\mathbb{X}$ be a random variable over the sample space $[a, b]$ such that $\mathbb{E}[\mathbb{X}]=0$. For any $h>0$, we have

$$
\mathbb{E}[\exp (h \mathbb{X})] \leqslant \frac{b}{b-a} \exp (h a)-\frac{a}{b-a} \exp (h b)
$$

- In the lecture, we proved the underlying intuition for this result. Here, we discuss how to formalize that proof intuition.
- Consider $x \in[a, b]$ (remember $a$ is a negative real number)
- We want to compute $p$ and $q$ such that $p a+q b=x$ and $p+q=1$. Note that $p=\frac{b-x}{b-a}$ and $q=\frac{x-a}{b-a}$ is the solution.
- By Jensen's we have

$$
p \exp (h a)+q \exp (h b) \geqslant \exp (p \cdot h a+q \cdot h b)=\exp (h x)
$$

- Therefore, we can write the following inequality

$$
\frac{b-\mathbb{X}}{b-a} \exp (h a)+\frac{\mathbb{X}-a}{b-a} \exp (h b) \geqslant \exp (h \mathbb{X})
$$

- Taking expectations both sides, we get

$$
\begin{array}{r}
\mathbb{E}\left[\frac{b-\mathbb{X}}{b-a} \exp (h a)+\frac{\mathbb{X}-a}{b-a} \exp (h b)\right] \geqslant \mathbb{E}[\exp (h \mathbb{X})] \\
\Longleftrightarrow \frac{b-\mathbb{E}[\mathbb{X}]}{b-a} \exp (h a)+\frac{\mathbb{E}[\mathbb{X}]-a}{b-a} \exp (h b) \geqslant \mathbb{E}[\exp (h \mathbb{X})] \\
\Longleftrightarrow \frac{b}{b-a} \exp (h a)-\frac{a}{b-a} \exp (h b) \geqslant \mathbb{E}[\exp (h \mathbb{X})]
\end{array}
$$

And, we are done!

## Proof of the Second Lemma (Hoeffding's Lemma) I

- Goal. For $a<0<b$, we have

$$
\frac{b}{b-a} \exp (h a)-\frac{a}{b-a} \exp (h b) \leqslant \exp \left(h^{2}(b-a)^{2} / 8\right)
$$

Or, equivalently

$$
\ln \left(\frac{b}{b-a} \exp (h a)-\frac{a}{b-a} \exp (h b)\right) \leqslant h^{2}(b-a)^{2} / 8
$$

- We shall use the following variable substitution $u=h(b-a)$
- Consider the following simplification

$$
\begin{aligned}
& \frac{b}{b-a} \exp (h a)-\frac{a}{b-a} \exp (h b) \\
= & \exp (h a)\left(\frac{b}{b-a}-\frac{a}{b-a} \exp (h(b-a))\right) \\
= & \exp (h a)\left(1+\frac{a}{b-a}-\frac{a}{b-a} \exp (h(b-a))\right)
\end{aligned}
$$

## Proof of the Second Lemma (Hoeffding's Lemma) II

- We use the following substitution: $\theta=\frac{-a}{b-a}$. Substituting the value of $u$, we get $\theta=(-a) /(u / h) \Longleftrightarrow a h=-\theta u$.
- So, we get

$$
\exp (h a)\left(1+\frac{a}{b-a}-\frac{a}{b-a} \exp (h(b-a))\right)=\exp (-\theta u)(1-\theta+\theta \exp (u))
$$

- Taking $\ln$, our goal is to prove the following statement

$$
f_{\theta}(u):=-\theta u+\ln (1-\theta+\theta \exp (u)) \leqslant u^{2} / 8
$$

- We shall use Taylor's remainder theorem on $f_{\theta}(u)$
- Note that

$$
\begin{aligned}
f_{\theta}(u) & =-\theta u+\ln (1-\theta+\theta \exp (u)) \\
f_{\theta}^{\prime}(u) & =-\theta+\frac{\theta \exp (u)}{1-\theta+\theta \exp (u)} \\
f_{\theta}^{\prime \prime}(u) & =\frac{\theta \exp (u)}{1-\theta+\theta \exp (u)}-\frac{\theta^{2} \exp (2 u)}{(1-\theta+\theta \exp (u))^{2}} \\
& =t(1-t) \leqslant 1 / 4
\end{aligned}
$$

where $t=\frac{\theta \exp (u)}{1-\theta+\theta \exp (u)}$.

- So, we get

$$
f_{\theta}(u)=f_{\theta}(0)+f_{\theta}^{\prime}(0) u+f_{\theta}^{\prime \prime}(v) u^{2} / 2
$$

for some $v \in[0, u]$. That is,

$$
f_{\theta}(u)=0+0 u+f_{\theta}^{\prime \prime}(v) u^{2} / 2 \leqslant u^{2} / 8
$$

This step completes the proof of the lemma.

We ended the lecture with a discussion of providing a alternate/tighter proof for Hoeffding's Lemma.

