
Lecture 09: Hoeffding Bound Proof
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Recall: Chernoff I

Let us recall the Chernoff Bound
Let X be a random variable over the samples space {0, 1} such
that P [X = 1] = p and P [X = 0] = 1− p

Consider n independent samples of the distribution X. This is
represented by the random variable (X(1),X(2), . . . ,X(n)).
Our object of study is: Sn,p =

∑n
i=1 X(i).

Note that E
[
Sn,p

]
= np, by the linearity of expectation

Chernoff bound states that Sn,p is significantly larger than the
expected values only with an exponentially small probability

P
[
Sn,p − E [Sn,p] > ∆

]
6 exp

(
−nDKL

(
p +

∆

n
, p

))
6 exp(−2∆2/n)

Intuitively, if ∆ = O(
√
n), then it is highly likely that

P
[
Sn,p − E

[
Sn,p

]
> ∆

]
is small (it can be any small

constant). Let us call this the “radius of concentration.”
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Recall: Chernoff II

Note that (1) this bound is independent of E
[
Sn,p

]
, and (2)

the Chernoff bound hold even when p is a function of n itself.
An Example. Suppose p = n−1/3. Then, we have
E
[
Sn,p

]
= np = n2/3. For this case, the radius of

concentration is again ∆ = O(
√
n).

We say that the Chernoff bound is “meaningful/useful” when
the radius of concentration is a o(E

[
Sn,p

]
).

An Example. Suppose p = n−2/3. In this case, we have
E
[
Sn,p

]
= np = n1/3. The radius of concentration is O(

√
n),

which is not o(E
[
Sn,p

]
).
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Deviation below the Expectation I

Chernoff bound states that the probability that Sn,p exceeds
E
[
Sn,p

]
by ∆ is at most exp(−2∆2/n)

How can we state that it is also unlikely that Sn,p is lower than
E
[
Sn,p

]
by ∆ is small?
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Deviation below the Expectation II
We are interested in

P
[
Sn,p − E

[
Sn,p

]
6 −∆

]
6?

Let us introduce the random variable Y = 1− X. Note that
P [Y = 1] = 1− p and P [Y = 0] = p.
Let Tn,1−p =

∑n
i=1 Y(i).

Note that E
[
Tn,1−p

]
= n(1− p)

We can now use Chernoff bound in the following manner

P
[
Sn,p − E

[
Sn,p

]
6 −∆

]
= P

[
(n − Sn,p)− (n − E

[
Sn,p)

]
> ∆

]
= P

[
Tn,1−p − E

[
Tn,1−p

]
> ∆

]
6 exp

(
−nDKL

(
1− p +

∆

n
, 1− p

))
6 exp

(
−2∆2/n

)
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Hoeffding Bound I

Let (X1,X2, . . . ,Xn) be independent random variables such
that Xi is over the sample space [a1, bi ]

We study the random variable Sn =
∑

i=1 Xi

We are interested in the probability

P
[
Sn − E [Sn] > ∆

]
6?

Think: Without loss of generality we can assume that
E [Xi ] = 0. Why?
Hoeffding’s bound states that

P
[
Sn − E [Sn] > ∆

]
6 exp

(
− ∆2∑n

i=1(bi − ai )2

)
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Hoeffding Bound II

Think: The following two results suffice to prove the
Hoeffding’s bound using the technique that we used to prove
the Chernoff bound.

Lemma
Let X be a random variable over the sample space [a, b] such that
E [X] = 0. For any h > 0, we have

E
[
exp(hX)

]
6

b

b − a
exp(ha)− a

b − a
exp(hb)

Lemma (Hoeffding’s Lemma)

For a < 0 < b, we have

b

b − a
exp(ha)− a

b − a
exp(hb) 6 exp(h2(b − a)2/8)

Concentration



Hoeffding Bound III

Next, we prove these two lemmas
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Proof of the First Lemma I

Goal. Let X be a random variable over the sample space [a, b]
such that E [X] = 0. For any h > 0, we have

E
[
exp(hX)

]
6

b

b − a
exp(ha)− a

b − a
exp(hb)

In the lecture, we proved the underlying intuition for this
result. Here, we discuss how to formalize that proof intuition.

Consider x ∈ [a, b] (remember a is a negative real number)

We want to compute p and q such that pa + qb = x and
p + q = 1. Note that p = b−x

b−a and q = x−a
b−a is the solution.

By Jensen’s we have

p exp(ha) + q exp(hb) > exp(p · ha + q · hb) = exp(hx)
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Proof of the First Lemma II

Therefore, we can write the following inequality

b − X
b − a

exp(ha) +
X− a

b − a
exp(hb) > exp(hX)

Taking expectations both sides, we get

E
[
b − X
b − a

exp(ha) +
X− a

b − a
exp(hb)

]
> E

[
exp(hX)

]
⇐⇒ b − E [X]

b − a
exp(ha) +

E [X]− a

b − a
exp(hb) > E

[
exp(hX)

]
⇐⇒ b

b − a
exp(ha)− a

b − a
exp(hb) > E

[
exp(hX)

]
And, we are done!
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Proof of the Second Lemma (Hoeffding’s Lemma) I

Goal. For a < 0 < b, we have

b

b − a
exp(ha)− a

b − a
exp(hb) 6 exp(h2(b − a)2/8)

Or, equivalently

ln

(
b

b − a
exp(ha)− a

b − a
exp(hb)

)
6 h2(b − a)2/8

We shall use the following variable substitution u = h(b − a)

Consider the following simplification

b

b − a
exp(ha)− a

b − a
exp(hb)

= exp(ha)

(
b

b − a
− a

b − a
exp(h(b − a))

)
= exp(ha)

(
1 +

a

b − a
− a

b − a
exp(h(b − a))

)
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Proof of the Second Lemma (Hoeffding’s Lemma) II

We use the following substitution: θ = −a
b−a . Substituting the

value of u, we get θ = (−a)/(u/h) ⇐⇒ ah = −θu.
So, we get

exp(ha)

(
1 +

a

b − a
− a

b − a
exp(h(b − a))

)
= exp(−θu)(1 − θ + θ exp(u))

Taking ln, our goal is to prove the following statement

fθ(u) := − θu + ln(1− θ + θ exp(u)) 6 u2/8

We shall use Taylor’s remainder theorem on fθ(u)
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Proof of the Second Lemma (Hoeffding’s Lemma) III

Note that

fθ(u) = −θu + ln(1− θ + θ exp(u))

f ′θ(u) = −θ +
θ exp(u)

1− θ + θ exp(u)

f ′′θ (u) =
θ exp(u)

1− θ + θ exp(u)
− θ2 exp(2u)(

1− θ + θ exp(u)
)2

= t(1− t) 6 1/4,

where t = θ exp(u)
1−θ+θ exp(u) .
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Proof of the Second Lemma (Hoeffding’s Lemma) IV

So, we get

fθ(u) = fθ(0) + f ′θ(0)u + f ′′θ (v)u2/2,

for some v ∈ [0, u]. That is,

fθ(u) = 0 + 0u + f ′′θ (v)u2/2 6 u2/8

This step completes the proof of the lemma.

Concentration



Extra-credit Problem

We ended the lecture with a discussion of providing a
alternate/tighter proof for Hoeffding’s Lemma.
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