
Lecture 08: Chernoff and Hoeffding Bound +
Hypergeometric Distribution
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Recall I

Last lecture we were deriving the Chernoff Bound

Let X be a Bernoulli distribution with mean p. That is X is a
random variable over the sample space {0, 1} such that the
probability P [X = 1] = p and P [X = 0] = (1− p).

Let (X(1),X(2), . . . ,X(n)) be n independent and identical
samples of the random variable X
Our object of study if the random variable

Sn,p := X(1) +· · ·+ X(n)

This random variable is over the sample space {0, 1, . . . , n}

and we have P
[
Sn,p = i

]
=

(
n
i

)
pi (1− p)n−i . This

distribution is also referred to as the binomial distribution
Bn,p.
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Recall II

The expected value of Sn,p is E
[
Sn,p

]
= np by linearity of

expectation

We are interested in finding whether it is possible for the
random variable Sn,p to deviate far from the expected value or
not.

Chernoff bound states that

P
[
Sn,p > n(p + t)

]
6 exp(−nDKL (p + t, p))

That is, the Chernoff bound states that the probability of
exceeding the mean by nt, for constant t, is exponentially
small in n
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Recall III
Let us now recall the steps that were involved in deriving the
Chernoff Bound
The first observation was that, for any h > 0, we have

P
[
Sn,p > n(p + t

]
= P

[
exp

(
hSn,p

)
> exp(hn(p + t))

]
The goal is to consider “all moments of the random variable
Sn,p suitably weighted.” The identity is a result of the fact that
exp(h·) is a monotonically increasing function for positive h.
Then, we applied Markov to obtain the upper bound

6
E
[
exp

(
hSn,p

)]
exp(hn(p + t))

We emphasize that this is the only place we shall apply an
inequality. The tightness of the final bound is solely dependent
on the tightness of this inequality!
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Recall IV

Next, we observe that the expectation

E
[
exp(hSn,p)

]
= E

[
exp(hX(1))

]
· · ·E

[
exp(hX(n))

]
=
(
E
[
exp(hX)

])n
The first equality relies on the fact that the random variables
X(1), . . . ,X(n) are independent. The final equality relies on the
fact that the random variables X(1), . . . ,X(n) are identical to
X. Based on this observation, the upper-bound evaluates to
the following

=

(
(1− p) + p exp(h)

exp(h(p + t))

)n
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Recall V

This bound holds for all positive h. We choose h = h∗ that
minimizes the quantity

(
(1−p)+p exp(h)
exp(h(p+t))

)
. By basic calculus, we

obtain

exp(h∗) =
(1− p)(p + t)

p(1− p − t)

Substituting this value of h = h∗ in the upper-bound, we get

=

((
p + t

p

)p+t (1− p − t

1− p

)1−p−t
)−n

= exp(−nDKL (p + t, p))

This completes the proof that

P
[
Sn,p > n(p + t)

]
6 exp(−nDKL (p + t, p))
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Recall VI

This bound is still not easy to work. We shall derive bounds
that are easier to calculate
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Applications I

Problem 1. Suppose we are given a coin that outputs heads
with probability p, and outputs tails with probability (1− p).
Can we estimate p accurately?

Our algorithm is the following. We toss the coin n times and
count the number of heads ñ. Then, we output p̃ = ñ

n as an
estimate of the quantity p.

What is the probability that we are accurate? Chernoff bound
states that

P
[
Sn,p > n(p + ε)

]
6 exp(−nDKL (p + ε, p))

So, the probability that p̃ > p + ε is

6 exp(−nDKL (p + ε, p))
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Applications II

Problem 2. Suppose we have a randomized algorithm that
correctly decides whether x ∈ L or not, for some language L,
with probability 0.75. Can we construct another algorithm that
correctly decides whether x ∈ L or not with probability
1− 2−k , for any k > 2?

Hint: Run the algorithm a large number of times and take a
majority of the outcome. Use Chernoff bound to analyze the
algorithm.
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Goal of today’s Lecture I

We will obtain a more “easy-to-evaluate” upper-bound for
Chernoff Bound
We shall generalize the Chernoff bound in two orthogonal
directions to obtain two different bounds

Concentration of the Hypergeometric Distribution, and
Hoeffding Bound
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Goal of today’s Lecture II

Hypergeometric Distribution. Let us establish a new way to
interpreting the random variables (X(1), . . . ,X(n)). Suppose we
have a box of N balls. Among them pN are red and (1− p)N
are blue. The random variable X(1) is a the random variable
corresponding to the experiment of drawing a random ball
from this box and checking whether the balls is red or not.
Then, we replace the ball back in the box. Now, the random
variable X(2) corresponds to the drawing a random balls from
the box and checking whether it is red or not.
And, so on...

In the hypergeometric distribution, we have N > n and we
perform the same experiment as above except that we
do not replace the balls back into the bin!
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Goal of today’s Lecture III

Hoeffding Bound. Instead of considering (X(1), . . . ,X(n)) we
consider independent random variables (X1, . . . ,Xn) such that
each Xi is a distribution over the sample space [ai , bi ] and,
overall, we have E [X1 +· · ·+ Xn] = np.
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Easy to Calculate Chernoff Bound I

Our goal is to find an easy to evaluate upper bound of

exp(−nDKL (p + t, p))

This goal is equivalent to finding an easy to evaluate
lower-bound of

DKL (p + t, p) = (p+t) ln
p + t

p
+(1−p−t) ln 1− p − t

1− p
=: g(t)

We do this by using Taylor expansion of g(t) around t = 0.
Let us start with this process.
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Easy to Calculate Chernoff Bound II

Note that g(0) = 0
Let us differentiate and obtain g (1)(t)

g (1)(t) = ln
p + t

p
+ 1− ln

1− p − t

1− p
− 1

= ln
p + t

p
− ln

1− p − t

1− p

Note that g (1)(0) = 0
Let us differentiate once more and obtain g (2)(t)

g (2)(t) =
1

p + t
+

1
1− p − t

So, we get g (2)(0) = 1
p(1−p) . Okay, so we got something

non-negative. We shall truncate at the next term in the
Taylor’s Expansion.
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Easy to Calculate Chernoff Bound III

Let us differentiate once more and obtain g (3)(t)

g (3)(t) = − 1
(p + t)2

+
1

(1− p − t)2
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Easy to Calculate Chernoff Bound IV

We shall see a few bounds. Let us expand till 2-terms. There
exists c ∈ [0, t] such that

g(t) = g(0) + g (1)(0)t + g (2)(c)
t2

2

=
t2

2(p + c)(1− p − c)

> 2t2, (by AM-GM Inequality)

This bound is not sensitive to p. Let us get a bound sensitive
to p. We consider 3-terms in the expansion now. For some
c ∈ [0, t], we have.

g(t) = g(0) + g (1)(0)t + g (2)(0)
t2

2
+ g (3)(c)

t2

6

=
t2

2p(1− p)
+ g (3)(c)

t2

6
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Easy to Calculate Chernoff Bound V

If p > 1/2, then we have g (3)(c) > 0 and, consequently,

g(t) >
t2

2p(1− p)

Let us summarize

P
[
Sn,p > n(p + t)

]
6 exp(−nDKL (p + t, p)) 6 exp(−2nt2)

P
[
Sn,p > n(p + t)

]
6 exp(−nDKL (p + t, p)) 6exp

(
−n t2

2p(1− p)

)
when p > 1/2

Take a look at the graph at desmos
For a bound for all p, go one more term in the Taylor
expansion.
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Hypergeometric Distribution

Recall the hypergeometric distribution. We are given N balls
in a bin. There are pN red balls and (1− p)N blue balls. We
sample n balls from the bin without replacement. Let the
samples be (X1, . . . ,Xn). We are interested in the probability
that we see n(p + t) red balls.
Crucial Observation. Pause just after time j (i.e., just after
picking j balls).

1 If you have p red balls in (X1, . . . ,Xj) then the probability that
Xj+1 is a red ball is p.

2 If you have < p red balls in (X1, . . . ,Xj) then the probability
that Xj+1 is a red ball is > p.

3 If you have > p red balls in (X1, . . . ,Xj) then the probability
that Xj+1 is a red ball is < p.

Conclusion. The hypergeometric series pushes the “sum”
towards the mean. So, it is more concentrated than the
binomial distribution B(n, p)!
Using coupling argument this intuition can be formalized.
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Hoeffding Bound I

First Change. Let us assume that the mean of each Xi is 0.
This assumption is justified because we can consider the
random variable Yi = Xi − E [Xi ] instead. This simplification
will make several of the mathematical expressions less
cumbersome.
Now, given the assumption that E [Xi ] = 0 for all
i ∈ {1, . . . , n}, we have E

[
Sn,p

]
= 0 as well. So, we are

interested in bounding the probability

P
[
Sn,p > nt

]
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Hoeffding Bound II

Second Change. We have to upper-bound E
[
exp(hXi )

]
given the fact that Xi is over the sample space [ai , bi ] and
E [Xi ] = 0. How do we proceed further?
Let us use Hoeffding’s Lemma

Lemma (Hoeffding’s Lemma)

Let Xi be a r.v. over the sample space [ai , bi ] with E [Xi ] = 0.
Then, the following holds

E
[
exp(hXi )

]
6 exp

(
h2(bi − ai )

2

8

)

Concentration



Hoeffding Bound III

Then you should be able to complete the proof of Hoeffding
Bound.

P
[
Snp > n(p + t)

]
6 exp

(
− 2t2n2∑n

i=1(bi − ai )2

)
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