
Lecture 07: Concentration Bounds (Basics)
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Overview

In the previous lectures, we learned to compute estimates of
the expected value of a random variable
But, is the expected value a good representation of the
random variable?
If the random variable concentrates most of its probability
mass around the expected value, then we can consider the
expected value to be a good representative of the random
variable’s behavior
In the topic of concentration, we shall cover technique to
argue the “typicality of a randomized experiment,” i.e., say the
mean or the median being a good representative of the
random variable
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Markov Inequality I

Theorem (Markov Inequality)

Let X be a r.v. over the sample space Ω ⊆ R>0 (i.e., the set of
non-negative real numbers), and µ = E [X]. Then, the following is
true

P [X > λµ] 6
1
λ

This is also equivalent to the expression

P [X > λ] 6
µ

λ

Intuition: Suppose λ is large. Then, the probability that X deposits
probability mass further than λµ is unlikely.
I present the proof only for discrete Ω. The case of non-discrete Ω
is similar.
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Markov Inequality II

Proof.
If possible let, Markov’s inequality is false. That is, there exists
λ > 1 such that P [X > λµ] > 1

λ . Then, let us lower-bound the
expectation as follows.

µ =
∑
i∈Ω

iP [X = i ]

=
∑
i∈Ω
i<λµ

iP [X = i ] +
∑
i∈Ω
i>λµ

iP [X = i ]

> 0 +
∑
i∈Ω
i>λµ

(λµ)P [X = i ]

= (λµ)P [X > λµ] > (λµ) · 1
λ

= µ

So, we have obtain µ > µ, a contradiction.
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Comments on Markov I

We emphasize that for every λ > 1, there is a distribution for
which the Markov inequality is tight. Let X be a distribution
such that P [X = 0] = 1− 1

λ and P [X = 1] = 1
λ

If there exists B such that P [X > B] = 0, i.e., the sample
space of X bounded above then we can also apply Markov
inequality to the random variable (B − X)

Think: How is Markov inequality equivalent to the pigeon-hole
principle?

Think: Consider the following problem. Suppose (R,C) be a
joint-distribution over Ω = {1, . . . ,m} × {1, . . . , n}.
Intuitively, think of a matrix with m-rows and n-columns. The
r.v. associated probability to the cells.
Suppose there is a Fun event, and the following holds.

P
[
(R,C) ∈ Fun

]
> ε
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Comments on Markov II
That is, if you sample a cell according to the joint distribution
(R,C) then the probability of Fun event occurring is at least ε.
Consider the following expression.

P
[
(R,C) ∈ Fun|R = r

]
This expression represents the probability of the fun event
happening if we restrict (condition) on the row r ∈ {1, . . . ,m}.
Prove the following statement. The probability of sampling
r ∼ R such that it has

P
[
(R,C) ∈ Fun|R = r

]
> α

is > ε/α.
Russel Impagliazzo refers to this result as the pigeon-hole
principle. The proof of this result is similar to the proof of
Markov inequality. It is an excellent exercise to think of ways
how this result can be used for derandomization.

Concentration



Chebyshev’s Inequality I

Theorem
For any random variable X and µ = E [X]. Then, we have

P
[
|X− µ| > t

]
6

Var [X]

t2

Proof.

P
[
|X− µ| > t

]
= P

[
(X− µ)2 > t2

]
6

E
[
(X− µ)2

]
t2

=
Var [X]

t2
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Chebyshev’s Inequality II

In the previous proof, we used the following fact.

P
[
|X− µ| > t

]
= P

[
(X− µ)2 > t2

]
In general, for which functions f does the following hold?

P
[
|X− µ| > t

]
= P

[
f
(
|X− µ|

)
> f (t)

]
Answer: For functions f that is monotonically increasing in the
sample space of |X− µ|. This is a very crucial trick that shall
be used in various other problems.
Think: So, we saw that “Markov studied the r.v. X and got a
bound in 1/t” and “Chebyshev studied the r.v. X2 and got a
bound in 1/t2.” Can we extrapolate this to use “high powers
of X” (technically referred to as moments) to obtain bounds
that are “high polynomials in 1/t?”
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Chernoff Bound I

Let X be r.v. over the sample space Ω = {0, 1} such that
P [X = 0] = 1− p and P [X = 1] = p. Intuitively, think of X as
a coin that says “heads” with probability p and “tails” with
probability 1− p.
Note that E [X] = p

Suppose we consider n independent and identical samples of
X. That is, we consider

(
X(1),X(2), . . . ,X(n)

)
. Intuitively, we

perform n independent coin tosses represented by X.
We are interested in studying the random variable

Sn,p :=
n∑

i=1

X(i)

Intuitively, the random variable Sn,p represents the number of
heads when we perform n independent tosses of X
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Chernoff Bound II

Note that the sample space of Sn,p is the set {0, 1, . . . , n}.
Moreover, we can exactly compute the probability that

Sn,p = j , for any j ∈ {0, 1, . . . , n}. There are

(
n
j

)
ways of

choosing which coins output “heads.” The probability of those
coins outputting “heads” is pj , and the probability that other
coins outputting “tails” is (1− p)n−j . So, overall, we have

P
[
Sn,p = j

]
=

(
n
j

)
pj(1− p)n−j

Note that by linearity of expectation we have

E
[
Sn,p

]
= np

Chernoff bound states that Sn,p is very concentrated around
its mean.
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Chernoff Bound III

Suppose we want to find the probability

P
[
Sn,p > n(p + t)

]
We can directly perform the following sum

∑
j>n(p+t)

(
n
j

)
pj(1− p)n−j

However, this sum is extremely difficult to estimate. Chernoff
bound provides an easy way to estimate this sequence.
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Chernoff Bound IV

How tight is Chernoff bound? One can show that the Chernoff
bound is very tight. We shall not explicitly cover the proof for
this tightness result. However, one can use the following
Stirling’s approximation to easily demonstrate the tightness of
the Chernoff bound.

√
2πn

(
n

e

)n

exp(1/12n+1) 6 n! 6
√
2πn

(
n

e

)n

exp(1/12n)

There is a more combinatorial technique using “the method of
types.”

The random variable Sn,p is also referred to as the “Binomial
distribution” B(n, p)
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Chernoff Bound V

Theorem (Chernoff Bound)

P
[
Sn,p > n(p + t)

]
6 exp(−nDKL (p + t, p)) 6 exp(−2nt2),

where the function DKL (·, ·) is the Kullback–Leibler divergence
defined as follows

DKL (p + t, p) := (p + t) log
p + t

p
+ (1− p − t) log

1− p − t

1− p
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Chernoff Bound VI

Before we proceed to proving this result, let us interpret this
theorem statement.

Suppose p = 1/2 and t = 1/4. Then, it is exponentially
unlikely that Sn,p surpasses 3n/4

Suppose p = 1/2 and t = c/
√
n. Then, the probability that

Sn,p surpasses n(p + t) is only a constant.

Note that the last bound exp(−2nt2) is not a function of p at
all. So, in many contexts, this is not a good estimate to use.
However, the bound exp(−nDKL (p + t, p)) is a very good
estimate for all values of p.
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Proof of Chernoff Bound I

We are interested in upper-bounding the probability

P
[
Sn,p > n(p + t)

]
Note that, for any positive h, we have

P
[
Sn,p > n(p + t)

]
= P

[
exp

(
hSn,p

)
> exp(hn(p + t))

]
The exact value of h will be chosen later. The intuition of
using the exp(·) function is to consider all moments of Sn,p.
Now, we apply Markov to obtain

P
[
exp

(
hSn,p

)
> exp(hn(p + t))

]
6

E
[
exp

(
hSn,p

)]
exp(hn(p + t))
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Proof of Chernoff Bound II

Now, we need an observation. Suppose X and Y are two
independent random variables. Then, we have
E
[
exp(X + Y)

]
= E [X] · E [Y]. We emphasize that X and Y

have to be independent to apply this result.

Note that we have Sn,p =
∑n

i=1 X(i). So, we can apply the
previous observation to obtain the following result.

E
[
exp

(
hSn,p

)]
exp(hn(p + t))

=

∏n
i=1 E

[
exp(hX(i))

]
exp(hn(p + t))

=

(
E
[
exp(hX)

]
exp(h(p + t))

)n

Recall that X is a random variable such that P [X = 0] = 1− p
and P [X = 1] = p. So, the random variable exp(hX) is such
that P

[
exp(hX) = 1

]
= 1− p and P

[
exp(hX) = exp(h)

]
= p.

Therefore, we can conclude that

E
[
exp(hX)

]
= (1− p) + p exp(h)
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Proof of Chernoff Bound III

Substituting this value, we get(
E
[
exp(hX)

]
exp(h(p + t))

)n

=

(
(1− p) + p exp(h)

exp(h(p + t))

)n

So, let us take a pause at this point and recall what we have
proven thus far. We have shown that, for all positive h, the
following holds

P
[
Sn,p > n(p + t)

]
6

(
(1− p) + p exp(h)

exp(h(p + t))

)n
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Proof of Chernoff Bound IV

To obtain the tightest upper-bound we should use the value of
h = h∗ that minimizes the right-hand side expression.

f (h) =
(1 − p) + p exp(h)

exp(h(p + t))
= (1−p) exp(−h(p+ t))+p exp(h(1−p− t))

Let us compute f ′(h) and solve for f ′(h∗) = 0. Note that we
have

f ′(h) = −h(1−p)(p+ t) exp(−h(p+ t))+hp(1−p− t) exp(h(1−p− t))

Equating f ′(h) = 0, we get

h∗(1−p)(p+t) exp(−h∗(p+t)) = h∗p(1−p−t) exp(h∗(1−p−t))

This is equivalent to

exp(h∗) =
(1− p)(p + t)

p(1− p − t)
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Proof of Chernoff Bound V

So, can check that h∗ is positive because the (1−p)(p+t)
p(1−p−t) > 1.

Further, taking h→∞ we can verify that f (h) > f (h∗). So,
we can conclude that h∗ is a minimum. (Otherwise, you can
also show that f ′′(h∗) > 0 to conclude that h∗ is minimum).
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Proof of Chernoff Bound VI

Now, let us substitute the value of h∗ to obtain

P
[
Sn,p > n(p + t)

]
6

 (1 − p) + (1−p)(p+t)
(1−p−t)(

(1−p)(p+t)
p(1−p−t)

)p+t


n

=

 1−p
1−p−t(

1−p
1−p−t

)p+t (
p+t
p

)p+t


n

=


(

1−p
1−p−t

)1−p−t

(
p+t
p

)p+t


n

=

((
1 − p

1 − p − t

)1−p−t (
p

p + t

)p+t
)n

=

((
1 − p − t

1 − p

)1−p−t (
p + t

p

)p+t
)−n
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Proof of Chernoff Bound VII

Now, we can use the definition of DKL (p + t, p) to obtain

P
[
Sn,p > n(p + t)

]
6

((
1− p − t

1− p

)1−p−t (p + t

p

)p+t
)−n

= exp(−nDKL (p + t, p))
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Proof of Chernoff Bound VIII

We have proven one party of the Chernoff bound. All that
remains is to prove that

exp(−nDKL (p + t, p)) 6 exp(−2nt2)

Or, equivalently, we need to prove that

DKL (p + t, p) > 2t2

That is,

(p + t) log
p + t

p
+ (1− p − t) log

1− p − t

1− p
> 2t2
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