Lecture 05: Balls and Bins: Max Load

Overview

- In today's lecture we shall study the behavior of the maximum load when $m=n$ balls are thrown into n bins

Bounding the expected value of $\mathbb{L}_{\text {max }}$

We shall show the following result

Theorem (Expected Max-Load)

Let $m=n$ balls be thrown uniformly and independently at random into n bins. Let $\mathbb{L}_{\text {max }}$ be the random variable denoting the maximum load of the bins. Then, we have the following result.

$$
\mathbb{E}\left[\mathbb{L}_{\max }\right]=\Theta\left(\frac{\log n}{\log \log n}\right)
$$

- Our idea is to prove the following. For some positive constant c, we have

$$
\mathbb{E}\left[\mathbb{L}_{\max }\right] \leqslant c\left(\frac{\log n}{\log \log n}\right)
$$

- Our strategy is to use the following trick to calculate the expectation of a random variable \mathbb{X} over natural numbers

$$
\begin{aligned}
\mathbb{E}[\mathbb{X}] & =\sum_{i \geqslant 1} i \cdot \mathbb{P}[\mathbb{X}=i] \\
& =\sum_{i \geqslant 1} \sum_{j \geqslant i} \mathbb{P}[\mathbb{X}=j] \\
& =\sum_{i \geqslant 1} \mathbb{P}[\mathbb{X} \geqslant i]
\end{aligned}
$$

Upper Bound II

- So, we have

$$
\mathbb{E}\left[\mathbb{L}_{\max }\right]=\sum_{i \geqslant 1} \mathbb{P}\left[\mathbb{L}_{\max } \geqslant i\right]
$$

Upper Bound III

Lemma

For any $\ell \in \mathbb{N}$, we have the following bound

$$
\mathbb{P}\left[\mathbb{L}_{j} \geqslant \ell\right] \leqslant\binom{ n}{\ell} \frac{1}{n^{\ell}} \leqslant \frac{1}{\ell!}
$$

Proof.

- The probability that bin j receives $\geqslant \ell$ balls is (at most) the probability of the following event
- We choose a set of ℓ balls from n balls in $\binom{n}{\ell}$ ways
- We compute the probability that these ℓ balls land in bin j
- The other balls can go anywhere (including falling in bin j)
- Think: Why is this an inequality and not an equality?
- Let ℓ^{*} be an integer such that $\left(\ell^{*}\right)!\geqslant n^{2}$
- Exercise: Prove that $\ell^{*} \leqslant c \frac{\log n}{\log \log n}$ for some positive constant c
- So, we have $\mathbb{P}\left[\mathbb{L}_{j} \geqslant \ell^{*}\right] \leqslant \frac{1}{n^{2}}$
- Now, by union bound, we have

$$
\mathbb{P}\left[\mathbb{L}_{1} \geqslant \ell^{*} \text { or } \mathbb{L}_{2} \geqslant \ell^{*} \text { or } \cdots \text { or } \mathbb{L}_{n} \geqslant \ell^{*}\right] \leqslant n \cdot \frac{1}{n^{2}}=\frac{1}{n}
$$

- That is, we have

$$
\mathbb{P}\left[\mathbb{L}_{\max } \geqslant \ell^{*}\right] \leqslant \frac{1}{n}
$$

- Now, we are at a position to upper bound the expected max-load

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{L}_{\max }\right] & =\sum_{i \geqslant 1} \mathbb{P}\left[\mathbb{L}_{\max } \geqslant i\right] \\
& =\sum_{i=1}^{\ell^{*}-1} \mathbb{P}\left[\mathbb{L}_{\max } \geqslant i\right]+\sum_{i=\ell^{*}}^{n} \mathbb{P}\left[\mathbb{L}_{\max } \geqslant i\right] \\
& \leqslant\left(\ell^{*}-1\right) \cdot 1+\left(n-\ell^{*}\right) \cdot \frac{1}{n} \\
& <\ell^{*}
\end{aligned}
$$

- Let us take a small detour. We shall introduce a very strong technical tool called "Poisson Approximation Theorem" and then revisit this problem

Poisson Distribution I

Let us start by calculating the property that bin j receives exactly ℓ balls

- Suppose we are throwing m balls into n bins
- There are $\binom{m}{\ell}$ ways to choose the set of ℓ balls that fall into the bin j
- Given this fixed set of balls, the probability that these ℓ balls fall into bin j, and the remaining ($m-\ell$) balls do not fall into bin j is given by the following expression

$$
\frac{1}{n^{\ell}}\left(1-\frac{1}{n}\right)^{m-\ell}
$$

- So, we have the following

$$
\mathbb{P}\left[\mathbb{L}_{j}=\ell\right]=\binom{m}{\ell} \frac{1}{n^{\ell}}\left(1-\frac{1}{n}\right)^{m-\ell}
$$

Rough Calculation below.

- Let $\mu=m / n$, the expected load of a bin
- Let us now perform a rough calculation

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{L}_{j}=\ell\right] & =\binom{m}{\ell} \frac{1}{n^{\ell}}\left(1-\frac{1}{n}\right)^{m-\ell} \\
& \approx \frac{m^{\ell}}{\ell!} \cdot \frac{1}{n^{\ell}} \cdot\left(1-\frac{1}{n}\right)^{m}\left(1-\frac{1}{n}\right)^{-\ell} \\
& =\frac{m^{\ell}}{\ell!} \cdot \frac{1}{(n-1)^{\ell}} \cdot\left(1-\frac{1}{n}\right)^{m} \\
& \approx \exp (-\mu) \frac{\mu^{\ell}}{\ell!}
\end{aligned}
$$

Poisson Distribution IV

Poisson Distribution.

- The random variable \mathbb{X} over $\Omega=\{0,1, \ldots$,$\} is a Poisson$ distribution with mean μ if the following condition is satisfied for all $i \in \Omega$

$$
\mathbb{P}[\mathbb{X}=i]=\exp (-\mu) \frac{\mu^{\ell}}{\ell!}
$$

- So, the load \mathbb{L}_{j} is (roughly) distributed like a Poisson distribution with mean $\mu=m / n$

Poisson Approximation I

Reality.

- We throw m balls into n bins uniformly and independently at random. Let $\left(\mathbb{L}_{1}, \mathbb{L}_{2}, \ldots, \mathbb{L}_{n}\right)$ be the joint distribution of the loads of the bins
Poisson Approximation.
- Let $\left(\mathbb{X}^{(1)}, \mathbb{X}^{(2)}, \ldots, \mathbb{X}^{(n)}\right)$ be the distribution corresponding to n independent Poisson distributions with mean μ

Goal.

- We can approximate the behavior of the function f in the reality using its behavior in the Poisson approximation world. That is, we approximate the random variable $f\left(\mathbb{L}_{1}, \ldots, \mathbb{L}_{n}\right)$ using the random variable $f\left(\mathbb{X}^{(1)}, \ldots, \mathbb{X}^{(n)}\right)$.

Poisson Approximation II

We state the following theorem without proof.

Theorem (Poisson Approximation)

If f is "well-behaved" then (for some function $c(m)$)

$$
\mathbb{E}\left[f\left(\mathbb{L}_{1}, \ldots, \mathbb{L}_{n}\right)\right] \leqslant c(m) \cdot \mathbb{E}\left[f\left(\mathbb{X}^{(1)}, \ldots, \mathbb{X}^{(n)}\right)\right]
$$

Refer to the book "Probability and Computing: Randomized Algorithms and Probabilistic Analysis," by Michael Mitzenmacher and? Eli Upfal for a full proof.

For example, if f is non-negative and monotonically increasing function in m, the number of balls, then we have $c(m)=2$.

If f is non-negative function then $c(m)=\mathrm{e} \sqrt{m}$.

Revisiting "Lower Bounding Max Load" |

- Suppose we show that

$$
\mathbb{P}\left[\mathbb{L}_{\max }<\ell^{* *}\right] \leqslant \frac{1}{n}
$$

- Then, we can do the following calculation

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{L}_{\text {max }}\right] & =\sum_{i \geqslant 0} i \mathbb{P}\left[\mathbb{L}_{\text {max }}=i\right] \\
& \geqslant \sum_{i \geqslant \ell^{* *}} i \mathbb{P}\left[\mathbb{L}_{\max }=i\right] \\
& \geqslant \sum_{i \geqslant \ell^{* *}} \ell^{* *} \mathbb{P}\left[\mathbb{L}_{\max }=i\right] \\
& =\ell^{* *} \mathbb{P}\left[\mathbb{L}_{\max } \geqslant \ell^{* *}\right] \\
& \geqslant \ell^{* *}\left(1-\frac{1}{n}\right)
\end{aligned}
$$

Revisiting "Lower Bounding Max Load" II

- To show that $\mathbb{P}\left[\mathbb{L}_{\max }<\ell^{* *}\right] \leqslant \frac{1}{n}$, let us define a random variable $\mathbf{1}_{\left\{\mathbb{L}_{\text {max }}<\ell^{* *}\right\}}$
- We can equivalently write this random variable as a function $f\left(\mathbb{L}_{1}, \ldots, \mathbb{L}_{n}\right)$
- Consider n independent Poisson distributions $\left(\mathbb{X}^{(1)}, \ldots, \mathbb{X}^{(n)}\right)$ with mean $\mu=m / n=1$
- By Poisson Approximation theorem, the expectation of this function in the real world is

$$
\leqslant \mathrm{e} \sqrt{n} \mathbb{E}\left[f\left(\mathbb{X}^{(1)}, \ldots, \mathbb{X}^{(n)}\right)\right]
$$

- So, it shall suffice to show that

$$
\left(\mathbb{P}\left[\mathbb{X}<\ell^{* *}\right]\right)^{n} \leqslant \frac{1}{\mathrm{e} n^{3 / 2}}=\exp \left(-1-\frac{3}{2} \log n\right)
$$

Revisiting "Lower Bounding Max Load" III

- Which is, in turn, equivalent to showing that

$$
\mathbb{P}\left[\mathbb{X}<\ell^{* *}\right] \leqslant \exp \left(-\frac{1+\frac{3}{2} \log n}{n}\right)
$$

- To prove the above statement, it suffices to prove the following statement

$$
\mathbb{P}\left[\mathbb{X}<\ell^{* *}\right] \leqslant 1-\left(\frac{1+\frac{3}{2} \log n}{n}\right)
$$

because $1-x \leqslant \exp (-x)$.

- To find $\ell^{* *}$ such that this bound holds, note the following.
- $\mathbb{P}\left[\mathbb{X}<\ell^{* *}\right]=1-\mathbb{P}\left[\mathbb{X} \geqslant \ell^{* *}\right] \leqslant 1-\mathbb{P}\left[\mathbb{X}=\ell^{* *}\right]=1-\frac{\exp (-1)}{\left(\ell^{* *}\right)!}$
- Now we solve for $\left(\ell^{* *}\right)!=\frac{n}{1+\frac{3}{2} \log n}$, which gives $\ell^{* *} \geqslant d \frac{\log n}{\log \log n}$, for some positive constant d

Coupon Collector Problem

- Problem Statement. What is the number m of balls that one should throw such that each bin receives at least one ball?
- This problem is referred to as the Coupon Collector's Problem. Basically, how many cereal boxes to buy so that you get all the toys?
- Think: How to solve this problem using the Poisson Approximation theorem. The answer is $m \approx n \log n$.
- How many balls should one throw to ensure that there are at least r balls in each bin?

