
Lecture 05: Balls and Bins: Max Load
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Overview

In today’s lecture we shall study the behavior of the maximum
load when m = n balls are thrown into n bins
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Bounding the expected value of Lmax

We shall show the following result

Theorem (Expected Max-Load)

Let m = n balls be thrown uniformly and independently at random
into n bins. Let Lmax be the random variable denoting the
maximum load of the bins. Then, we have the following result.

E [Lmax] = Θ

(
log n

log log n

)
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Upper Bound I

Our idea is to prove the following. For some positive constant
c , we have

E [Lmax] 6 c

(
log n

log log n

)
Our strategy is to use the following trick to calculate the
expectation of a random variable X over natural numbers

E [X] =
∑
i>1

i · P [X = i ]

=
∑
i>1

∑
j>i

P [X = j ]

=
∑
i>1

P [X > i ]
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Upper Bound II

So, we have
E [Lmax] =

∑
i>1

P [Lmax > i ]
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Upper Bound III

Lemma
For any ` ∈ N, we have the following bound

P
[
Lj > `

]
6

(
n
`

)
1
n`

6
1
`!

Proof.

The probability that bin j receives > ` balls is (at most) the
probability of the following event

We choose a set of ` balls from n balls in

(
n
`

)
ways

We compute the probability that these ` balls land in bin j
The other balls can go anywhere (including falling in bin j)

Think: Why is this an inequality and not an equality?
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Upper Bound IV

Let `∗ be an integer such that (`∗)! > n2

Exercise: Prove that `∗ 6 c log n
log log n for some positive constant

c

So, we have P
[
Lj > `∗

]
6 1

n2

Now, by union bound, we have

P
[
L1 > `∗ or L2 > `∗ or · · · or Ln > `∗

]
6 n · 1

n2 =
1
n

That is, we have

P
[
Lmax > `∗

]
6

1
n
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Upper Bound V

Now, we are at a position to upper bound the expected
max-load

E [Lmax] =
∑
i>1

P [Lmax > i ]

=
`∗−1∑
i=1

P [Lmax > i ] +
n∑

i=`∗

P [Lmax > i ]

6 (`∗ − 1) · 1 + (n − `∗) · 1
n

< `∗
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Lower Bound

Let us take a small detour. We shall introduce a very strong
technical tool called “Poisson Approximation Theorem” and
then revisit this problem
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Poisson Distribution I

Let us start by calculating the property that bin j receives exactly `
balls

Suppose we are throwing m balls into n bins

There are

(
m
`

)
ways to choose the set of ` balls that fall into

the bin j

Given this fixed set of balls, the probability that these ` balls
fall into bin j , and the remaining (m − `) balls do not fall into
bin j is given by the following expression

1
n`

(
1− 1

n

)m−`
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Poisson Distribution II

So, we have the following

P
[
Lj = `

]
=

(
m
`

)
1
n`

(
1− 1

n

)m−`
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Poisson Distribution III

Rough Calculation below.
Let µ = m/n, the expected load of a bin

Let us now perform a rough calculation

P
[
Lj = `

]
=

(
m
`

)
1
n`

(
1− 1

n

)m−`

≈ m`

`!
· 1
n`
·
(
1− 1

n

)m (
1− 1

n

)−`
=

m`

`!
· 1

(n − 1)`
·
(
1− 1

n

)m

≈ exp(−µ)
µ`

`!
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Poisson Distribution IV

Poisson Distribution.

The random variable X over Ω = {0, 1, . . . , } is a Poisson
distribution with mean µ if the following condition is satisfied
for all i ∈ Ω

P [X = i ] = exp(−µ)
µ`

`!

So, the load Lj is (roughly) distributed like a Poisson
distribution with mean µ = m/n
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Poisson Approximation I

Reality.
We throw m balls into n bins uniformly and independently at
random. Let (L1,L2, . . . ,Ln) be the joint distribution of the
loads of the bins

Poisson Approximation.
Let (X(1),X(2), . . . ,X(n)) be the distribution corresponding to
n independent Poisson distributions with mean µ

Goal.
We can approximate the behavior of the function f in the
reality using its behavior in the Poisson approximation world.
That is, we approximate the random variable f (L1, . . . ,Ln)
using the random variable f (X(1), . . . ,X(n)).
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Poisson Approximation II
We state the following theorem without proof.

Theorem (Poisson Approximation)

If f is “well-behaved” then (for some function c(m))

E
[
f (L1, . . . ,Ln)

]
6 c(m) · E

[
f (X(1), . . . ,X(n))

]
Refer to the book “Probability and Computing: Randomized
Algorithms and Probabilistic Analysis,” by Michael Mitzenmacher
and? Eli Upfal for a full proof.

For example, if f is non-negative and monotonically increasing
function in m, the number of balls, then we have c(m) = 2.

If f is non-negative function then c(m) = e
√
m.
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Revisiting “Lower Bounding Max Load” I

Suppose we show that

P
[
Lmax < `∗∗

]
6

1
n

Then, we can do the following calculation

E [Lmax] =
∑
i>0

iP [Lmax = i ]

>
∑
i>`∗∗

iP [Lmax = i ]

>
∑
i>`∗∗

`∗∗P [Lmax = i ]

= `∗∗P
[
Lmax > `∗∗

]
> `∗∗

(
1− 1

n

)
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Revisiting “Lower Bounding Max Load” II

To show that P [Lmax < `∗∗] 6 1
n , let us define a random

variable 1{Lmax<`∗∗}

We can equivalently write this random variable as a function
f (L1, . . . ,Ln)

Consider n independent Poisson distributions (X(1), . . . ,X(n))
with mean µ = m/n = 1

By Poisson Approximation theorem, the expectation of this
function in the real world is

6 e
√
nE
[
f (X(1), . . . ,X(n))

]
So, it shall suffice to show that(

P
[
X < `∗∗

])n
6

1
en3/2 = exp

(
−1− 3

2
log n

)
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Revisiting “Lower Bounding Max Load” III

Which is, in turn, equivalent to showing that

P
[
X < `∗∗

]
6 exp

(
−
1 + 3

2 log n

n

)

To prove the above statement, it suffices to prove the
following statement

P
[
X < `∗∗

]
6 1−

(
1 + 3

2 log n

n

)
,

because 1− x 6 exp(−x).
To find `∗∗ such that this bound holds, note the following.

P [X < `∗∗] = 1− P [X > `∗∗] 6 1− P [X = `∗∗] = 1− exp(−1)
(`∗∗)!

Now we solve for (`∗∗)! = n
1+ 3

2 log n
, which gives

`∗∗ > d log n
log log n , for some positive constant d
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Coupon Collector Problem

Problem Statement. What is the number m of balls that
one should throw such that each bin receives at least one ball?
This problem is referred to as the Coupon Collector’s Problem.
Basically, how many cereal boxes to buy so that you get all the
toys?
Think: How to solve this problem using the Poisson
Approximation theorem. The answer is m ≈ n log n.
How many balls should one throw to ensure that there are at
least r balls in each bin?
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