


Overview

@ In today's lecture we shall study the behavior of the maximum
load when m = n balls are thrown into n bins
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Bounding the expected value of Ly

We shall show the following result

Theorem (Expected Max-Load)

Let m = n balls be thrown uniformly and independently at random
into n bins. Let L.y be the random variable denoting the
maximum load of the bins. Then, we have the following result.

ELned = © (o)

log log n
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Upper Bound |

@ Our idea is to prove the following. For some positive constant
¢, we have
log n
E [Lmax] <c|—7F—
log log n

@ Our strategy is to use the following trick to calculate the
expectation of a random variable X over natural numbers

E[X] =) i-P[X=1]

izl

=YD PX=]

i>1 j>i

=> P[X>1]

i1
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Upper Bound 11

@ So, we have

E[Limax] = Y P [Liax > i]

i=1

it
-
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Upper Bound Il

For any ¢ € N, we have the following bound

n\1 1
>0 < ()5 <

o The probability that bin j receives > ¢ balls is (at most) the
probability of the following event

o We choose a set of ¢ balls from n balls in Z ways

o We compute the probability that these £ balls land in bin j
@ The other balls can go anywhere (including falling in bin j) O

@ Think: Why is this an inequality and not an equality?
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Upper Bound IV

o Let ¢* be an integer such that (£*)! > n?

log n
loglog n

o Exercise: Prove that /* < ¢ for some positive constant

c
So, we have P [ E*} < %

@ Now, by union bound, we have

PLi =0 orLo>lor---orL, >0 <n-— ==

o That is, we have

P [Lovax > 0] <
n
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Upper Bound V

@ Now, we are at a position to upper bound the expected
max-load

E [Lmax] == ZP [Lmax 2 l]

i>1
-1 n

= Z II;D[I[Jmax 2 ’] =+ ZP[]Lmax Z /]
i=1 i=e*

1
<S(E-1)-14 (-0

</

Birthday Paradox



Lower Bound

@ Let us take a small detour. We shall introduce a very strong
technical tool called “Poisson Approximation Theorem” and
then revisit this problem
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Poisson Distribution |

Let us start by calculating the property that bin j receives exactly ¢
balls

@ Suppose we are throwing m balls into n bins
@ There are <'Z> ways to choose the set of ¢ balls that fall into

the bin j

@ Given this fixed set of balls, the probability that these ¢ balls
fall into bin j, and the remaining (m — ¢) balls do not fall into
bin j is given by the following expression

1 m—/{
-2
n n
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Poisson Distribution Il

@ So, we have the following

o &
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Poisson Distribution IlI

Rough Calculation below.
@ Let = m/n, the expected load of a bin

@ Let us now perform a rough calculation

rtam0=(0)0-2)

2
=|3
~
3|~
N
=
|
S|
N———
3
VR
-
|
S|
N————
L
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Poisson Distribution 1V

Poisson Distribution.

@ The random variable X over Q = {0,1,...,} is a Poisson
distribution with mean p if the following condition is satisfied
for all i € Q

l
P[X = i] = exp(—p)

@ So, the load L; is (roughly) distributed like a Poisson
distribution with mean = m/n
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Poisson Approximation |

Reality.

@ We throw m balls into n bins uniformly and independently at
random. Let (L3, Lo,...,LL,) be the joint distribution of the
loads of the bins

Poisson Approximation.
o Let (X(l),X(Z), .. ,X(”)) be the distribution corresponding to
n independent Poisson distributions with mean 1
Goal.

@ We can approximate the behavior of the function f in the
reality using its behavior in the Poisson approximation world.
That is, we approximate the random variable f(Ly,...,L,)
using the random variable £(X(®) ... X)),
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Poisson Approximation Il

We state the following theorem without proof.

Theorem (Poisson Approximation)

If f is “well-behaved” then (for some function c(m))

E[f(Ly,...,Ln)] < c(m)-E [f(X(l), W)

Refer to the book “Probability and Computing: Randomized
Algorithms and Probabilistic Analysis,” by Michael Mitzenmacher
and? Eli Upfal for a full proof.

For example, if f is non-negative and monotonically increasing
function in m, the number of balls, then we have c(m) = 2.

If f is non-negative function then c(m) = ey/m.
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Revisiting “Lower Bounding Max Load" |

@ Suppose we show that

P [Limax < 0] < -

@ Then, we can do the following calculation
E[Limax] = Y iP [Limax = i]

iz0

> ) iP[Limax = 1]

I’}Z**

> ) P [Linax = 1]

i}[**

— E**]P) [Lmax 2 E**]

()
n
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Revisiting “Lower Bounding Max Load” |l

@ To show that P [Lyax < €] < % let us define a random
variable 1y, pesy

@ We can equivalently write this random variable as a function
f(Lq,...,Ly)

o Consider n independent Poisson distributions (X(1), ... X(n)
with mean y=m/n=1

@ By Poisson Approximation theorem, the expectation of this
function in the real world is

< ey/TE [f(X(l), . ,X(”))}

@ So, it shall suffice to show that
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Revisiting “Lower Bounding Max Load” Il

@ Which is, in turn, equivalent to showing that

1+%|ogn
n

P[X < 7] < em(

@ To prove the above statement, it suffices to prove the
following statement

3
P[x<f**]<1—<1+2log">,

n

because 1 — x < exp(—x).
@ To find ** such that this bound holds, note the following.

o PIX <] =1-P[X> (] <1-P[X=¢"]=1-

kR — n H 1
o Now we solve for (£**)! = Ti3logn’ which gives
0% > d 18" for some positive constant d
Ioglogn
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Coupon Collector Problem

o Problem Statement. What is the number m of balls that
one should throw such that each bin receives at least one ball?

@ This problem is referred to as the Coupon Collector's Problem.
Basically, how many cereal boxes to buy so that you get all the
toys?

@ Think: How to solve this problem using the Poisson
Approximation theorem. The answer is m = nlog n.

@ How many balls should one throw to ensure that there are at
least r balls in each bin?
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