Lecture 04: Balls and Bins: Birthday Paradox

Overview

- In today's lecture we will start our study of balls-and-bins problems
- We shall consider a fundamental problem known as the Birthday Paradox

Recall: Inequalities I

- Before we begin, let us recall a few inequalities from previous lectures.
- Using Taylor series, we had concluded the following fact.

Lemma

For any integer $k \geqslant 1$ and $x \in[0,1]$, we have the following bound.

$$
\ln (1-x) \leqslant\left(-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\cdots-\frac{x^{k}}{k}\right)
$$

- Using Taylor series, we had concluded the following fact.

Lemma

For any integer $k \geqslant 1$ and $x \in[0,1 / 2]$, we have the following bound.

$$
\left(-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\cdots-\frac{x^{k}}{k}\right)-\frac{x^{k}}{k} \leqslant \ln (1-x)
$$

Recall: Inequalities II

- In a previous lecture, we had seen that we can upper and lower-bound summations as integrals.

Lemma

Let c be a positive real number. Then, we have the following upper and lower bounds.

$$
\frac{m^{c+1}}{c+1}>\int_{1}^{m} x^{c} d x \geqslant \sum_{i=1}^{m-1} i^{c} \geqslant \int_{0}^{m-1} x^{c} d x=\frac{(m-1)^{c+1}}{c+1}
$$

Balls and Bins

- Let us introduce the Balls and Bins Experiment
- Suppose we have n bins and m balls
- We throw m balls into n bins independently and uniformly at random (Note that we have not assumed anything about whether $m<n$ or $m>n$)
- The "load of bin i " refers to the number of balls in bin i
- The "max-load" of the bins refers to the maximum load of the bins

Mathematical Formalization

- Our sample space is $[n]^{\otimes m}$
- Our random variables are $\left(\mathbb{X}_{1}, \ldots, \mathbb{X}_{m}\right)$, where \mathbb{X}_{i} represents the bin into which the i-th ball falls. The random variable \mathbb{X}_{i} is independent and uniformly distributed over [n]
- Now, the load of a bin $j \in[n]$ is the number of balls that fall into it. The random variable is represented as follows

$$
\mathbb{L}_{j}=\sum_{i=1}^{m} \mathbf{1}_{\left\{\mathbb{X}_{i}=j\right\}}
$$

- The max-load of the bins can be represented as the following random variable.

$$
\mathbb{L}_{\max }=\max \left\{\mathbb{L}_{1}, \mathbb{L}_{2}, \ldots, \mathbb{L}_{n}\right\}
$$

Expected Load I

Let us prove an interesting result about the load of any bin.

Theorem

For any $j \in[n]$, the expected load of the j-th bin is m / n.

Expected Load II

Proof.

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{L}_{j}\right] & =\mathbb{E}\left[\sum_{i=1}^{m} \mathbf{1}_{\left\{\mathbb{X}_{i}=j\right\}}\right], \text { By definition of the r.v. } \\
& =\sum_{i=1}^{m} \mathbb{E}\left[\mathbf{1}_{\left\{\mathbb{X}_{i}=j\right\}}\right], \text { By linearity of expectation } \\
& =\sum_{i=1}^{m} \mathbb{P}\left[\mathbb{X}_{i}=j\right], \text { By properties of indicator variables } \\
& =\sum_{i=1}^{m} \frac{1}{n}, \text { Because } \mathbb{X}_{i} \text { is uniform over }[n] \\
& =\frac{m}{n}
\end{aligned}
$$

Expected Load III

- Note that the proof does not rely on the fact that random variables $\mathbb{X}_{i} s$ are independent!

So, even if the balls are thrown in a "correlated fashion," as long as $\mathbb{P}\left[\mathbb{X}_{i}=j\right]=1 / n$, for all $i \in[m]$, the proof will hold.

Consider the following new way of throwing the balls. "Choose a bin uniformly at random and throw all the balls into that bin."

Note that in this manner of throwing balls, we still have $\mathbb{P}\left[X_{i}=j\right]=1 / n$, for all $i \in[m]$ and $j \in[n]$. So, the expected number of balls in the j-th bin is still m / n.

Birthday Paradox

English Formulation

- Assume that birthdays are distributed uniformly and independently at random over 365 days of the year
- Suppose we have m people in a room
- What is the probability that there are (at least) two people who share the same birthday?
- Alternatively, what is the probability that all m people have distinct birthdays?
Interestingly, as increase the number m we find that the event of "distinct birthdays" turns from a "likely event" to an "unlikely event" very quickly. Our goal is to study this phenomenon.

Mathematical Formulation

- We shall consider "people" as balls. And "birthdays" as bins.
- We are throwing m balls into n bins
- Note that the event "every ball falls into a distinct bin" is equivalent to the event " $\mathbb{L}_{\text {max }}=1$ "
- So, we are interested in study the following probability

$$
P_{m, n}:=\mathbb{P}\left[\mathbb{L}_{\max }=1\right]
$$

as a function of m and n

- It is clear that for $m=1$, we have $P_{m, n}=1$. And, for $m=n+1$, we have $P_{m, n}=0$.
- In fact, in the previous lecture, we had calculated this probability exactly

$$
P_{m, n}=\prod_{i=0}^{m-1}\left(1-\frac{i}{n}\right)
$$

Why Bound $P_{m, n}$?

- Note that the exact formula for $P_{m, n}$ is very opaque. We do not understand its properties clearly from that formula.
- Our goal, therefore, is to obtain tight upper and lower bound for this expression using simpler formulas
- Let us start with the exact formula

$$
P_{m, n}=\prod_{i=0}^{m-1}\left(1-\frac{i}{n}\right)
$$

- We do not like "products of polynomials." Let us turn the expression on the right-hand side into a summation.

$$
\ln P_{m, n}=\sum_{i=0}^{m-1} \ln \left(1-\frac{i}{n}\right)
$$

Upper Bound II

- This is still problematic. The right-hand side expressions are "logarithmic." But we can upper bound $\ln (1-x)$ using polynomial in x. For any integer $k \geqslant 1$, we get

$$
\begin{aligned}
\ln P_{m, n} & =\sum_{i=0}^{m-1} \ln \left(1-\frac{i}{n}\right) \\
& \leqslant \sum_{i=0}^{m-1}-\left(\frac{i}{n}\right)-\left(\frac{i}{n}\right)^{2} / 2-\cdots-\left(\frac{i}{n}\right)^{k} / k
\end{aligned}
$$

- Now we can individually bound the sum $\sum_{i=0}^{m-1} i^{c} \geqslant \frac{(m-1)^{c+1}}{c+1}$, for each $c \in[k]$. We get

$$
\ln P_{m, n} \leqslant-\frac{(m-1)^{2}}{2 n}-\frac{(m-1)^{3}}{2 \cdot 3 n^{2}}-\frac{(m-1)^{4}}{3 \cdot 4 n^{3}}-\cdots-\frac{(m-1)^{k+1}}{k(k+1) n^{k}}
$$

- Please use desmos to see the tightness of this upper-bound.

Upper Bound III

How to use this bound?

- Suppose we want to find out m (as a function of n) such that $P_{m, n} \leqslant 0.1$.
- To find such an m, let us find m such that

$$
-\frac{(m-1)^{2}}{2 n}-\frac{(m-1)^{3}}{2 \cdot 3 n^{2}}-\frac{(m-1)^{4}}{3 \cdot 4 n^{3}}-\cdots-\frac{(m-1)^{k+1}}{k(k+1) n^{k}}=\ln 0.1
$$

For this value of m, we will have $P_{m, n} \leqslant 0.1$.

- Note that if $(m-1)=\beta \sqrt{n}$ then the left hand side of the expression above is

$$
-\left(\beta^{2} / 2\right)-O\left(n^{-1 / 2}\right)=\ln 0.1
$$

This implies that

$$
\beta=\sqrt{-2 \ln 0.1-O\left(n^{-1 / 2}\right)}=\sqrt{\ln 100-O\left(n^{-1 / 2}\right)}
$$

- Conclusion: At $m \geqslant$ const. \sqrt{n} the probability $P_{m, n}$ falls below 0.1 (i.e., collisions are likely)
- We now prove a lower-bound using similar techniques. Let k be any positive integer.

$$
\begin{aligned}
\ln P_{m, n} & =\sum_{i=0}^{m-1} \ln \left(1-\frac{i}{n}\right) \\
& \geqslant \sum_{i=0}^{m-1}-\frac{i}{n}-\frac{i^{2}}{2 n}-\cdots-\frac{i^{k}}{k n}-\frac{i^{k}}{k n} \\
& >-\frac{m^{2}}{2 n}-\frac{m^{3}}{2 \cdot 3 n}-\cdots-\frac{m^{k+1}}{k \cdot(k+1) n}-\frac{m^{k+1}}{k \cdot(k+1) n}
\end{aligned}
$$

How to use this bound?

- Suppose we want to find out m (as a function of n) such that $P_{m, n} \geqslant 0.9$.
- To find such an m, let us find m such that

$$
-\frac{m^{2}}{2 n}-\frac{m^{3}}{2 \cdot 3 n^{2}}-\cdots-\frac{m^{k+1}}{k \cdot(k+1) n^{k}}-\frac{m^{k+1}}{k \cdot(k+1) n^{k}}=\ln 0.9
$$

For this value of m, we will have $P_{m, n} \geqslant 0.9$.

- Note that if $m=\alpha \sqrt{n}$ then, for $k \geqslant 2$, the left hand side of the expression above is

$$
-\left(\alpha^{2} / 2\right)-O\left(n^{-1 / 2}\right)=\ln 0.9
$$

This implies that $\alpha=\sqrt{\ln (1 / 0.81)-O\left(n^{-1 / 2}\right)}$

- Conclusion: At $m \leqslant$ const. \sqrt{n} the probability $P_{m, n}$ is above 0.9 (i.e., collisions are unlikely)

Birthday Bound: Conclusion

- So, collisions are unlikely at $m \leqslant \alpha \sqrt{n}$ and are likely at $m \geqslant \beta \sqrt{n}$
- A small increase of $(\beta-\alpha) \sqrt{n}$ in the value of m causes the probability of collisions transition from "low" to "high"
- This surprising phenomenon is referred to as the birthday paradox

Graphs of the Bounds

Check the code for an explanation of the upper and lower bounds on the birthday problem.

- The number n represents the number of bins. You can use the slider the change its values.
- The Y-axis represents probability. The X-axis represents m, the number of balls.
- We are interested in two thresholds. When does $P_{m, n}$ reach 0.9 ? And, when does $P_{m, n}$ reach 0.1?
- We plot the exact $P_{m, n}$ curve
- The value k represents the parameter k in the approximation used in our lecture today. Increasing k make the upper and lower bounds tighter. You can use the slider to change its value.
- Finally, we have the upper and the lower bounds to the $P_{m, n}$ curve

Alternate Technique to counting Collisions I

- Let $\mathbb{C}_{i, j}$ represent the event that balls i and j fall into the same bin
- Formally, we write this as follows. For $i, j \in[m]$ such that $i<j$ (this restriction avoids double counting) we define

$$
\mathbb{C}_{i, j}:=\mathbf{1}_{\left\{\mathbb{X}_{i}=\mathbb{X}_{j}\right\}}
$$

- We are interested in the total number of such collisions. That is

$$
\mathbb{C}:=\sum_{\substack{i, j \in[m] \\ i<j}} \mathbb{C}_{i, j}
$$

- Now, we are interested in computing its expected value

Alternate Technique to counting Collisions II

First let us begin with some preliminary observations regarding why \mathbb{C} is a good measure of collisions.

- Note that if there exists a bin with ℓ balls in it, then we have
$\mathbb{C} \geqslant\binom{\ell}{2}$
- So, if there exists two balls that collide, then we have $\ell \geqslant 2$
and, hence, $\mathbb{C} \geqslant\binom{ 2}{2} \geqslant 1$
- Further, we have $\mathbb{C} \geqslant\binom{\mathbb{L}_{\text {max }}}{2}$

Alternate Technique to counting Collisions III

- Now, let us calculate the expected value of \mathbb{C}

$$
\begin{aligned}
\mathbb{E}[\mathbb{C}] & =\mathbb{E}\left[\sum_{\substack{i, j \in[m] \\
i<j}} \mathbf{1}_{\left\{\mathbb{X}_{i}=\mathbb{X}_{j}\right\}}\right] \\
& =\sum_{\substack{i, j \in[m] \\
i<j}} \mathbb{E}\left[\mathbf{1}_{\left\{\mathbb{X}_{i}=\mathbb{X}_{j}\right\}}\right] \\
& =\sum_{\substack{i, j \in[m] \\
i<j}} \mathbb{P}\left[\mathbb{X}_{i}=\mathbb{X}_{j}\right] \\
& =\sum_{\substack{i, j \in[m] \\
i<j}} \frac{1}{n}=\binom{m}{2} \frac{1}{n}
\end{aligned}
$$

Alternate Technique to counting Collisions IV

- Note that if $m \approx \sqrt{2 n}$ then $\mathbb{E}[\mathbb{C}]$ is (roughly) 1 , i.e., we expect two balls to fall in one bin. Earlier we showed that if $m \geqslant \alpha \sqrt{n}$ then the probability of collision is $\geqslant 0.9$, and if $m \leqslant \beta \sqrt{n}$ then the probability of collision is $\leqslant 0.1$. The expected value of collisions becomes 1 in the intermediate zone (please plot this and check)

Alternate Technique to counting Collisions V

Note on a subtlety.

- Note that we only rely on the fact that $\mathbb{P}\left[\mathbb{X}_{i}=\mathbb{X}_{j}\right]=\frac{1}{n}$, for distinct i and j
- We do not need that all the balls are thrown independently
- It suffices if the random variables $\left(\mathbb{X}_{1}, \mathbb{X}_{2}, \ldots, \mathbb{X}_{m}\right)$ are 2-wise independent

Next Lecture

- In the next lecture, we shall study the following quantity

$$
\mathbb{E}\left[\mathbb{L}_{\max }\right]
$$

- Later in the course, we shall study the concentration of $\mathbb{L}_{\max }$ around the expected value

