
Lecture 04: Balls and Bins: Birthday Paradox
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Overview

In today’s lecture we will start our study of balls-and-bins
problems
We shall consider a fundamental problem known as the
Birthday Paradox
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Recall: Inequalities I

Before we begin, let us recall a few inequalities from previous lectures.

Using Taylor series, we had concluded the following fact.

Lemma

For any integer k > 1 and x ∈ [0, 1], we have the following bound.
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Using Taylor series, we had concluded the following fact.

Lemma

For any integer k > 1 and x ∈ [0, 1/2], we have the following bound.(
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Recall: Inequalities II

In a previous lecture, we had seen that we can upper and lower-bound
summations as integrals.

Lemma

Let c be a positive real number. Then, we have the following upper and lower
bounds.

mc+1

c + 1
>

∫ m

1
xc dx >

m−1∑
i=1

i c >
∫ m−1

0
xc dx =

(m − 1)c+1

c + 1
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Balls and Bins

Let us introduce the Balls and Bins Experiment
Suppose we have n bins and m balls
We throw m balls into n bins independently and uniformly at
random (Note that we have not assumed anything about
whether m < n or m > n)
The “load of bin i” refers to the number of balls in bin i

The “max-load” of the bins refers to the maximum load of the
bins
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Mathematical Formalization

Our sample space is [n]⊗m

Our random variables are (X1, . . . ,Xm), where Xi represents
the bin into which the i-th ball falls. The random variable Xi

is independent and uniformly distributed over [n]
Now, the load of a bin j ∈ [n] is the number of balls that fall
into it. The random variable is represented as follows

Lj =
m∑
i=1

1{Xi=j}

The max-load of the bins can be represented as the following
random variable.

Lmax = max {L1,L2, . . . ,Ln}
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Expected Load I

Let us prove an interesting result about the load of any bin.

Theorem

For any j ∈ [n], the expected load of the j-th bin is m/n.
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Expected Load II

Proof.

E [Lj ] = E

 m∑
i=1

1{Xi=j}

 , By definition of the r.v.

=
m∑
i=1

E
[
1{Xi=j}

]
, By linearity of expectation

=
m∑
i=1

P [Xi = j ] , By properties of indicator variables

=
m∑
i=1

1
n
, Because Xi is uniform over [n]

=
m

n
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Expected Load III
Note that the proof does not rely on the fact that random variables Xi s
are independent!

So, even if the balls are thrown in a “correlated fashion,” as long as
P [Xi = j ] = 1/n, for all i ∈ [m], the proof will hold.

Consider the following new way of throwing the balls. “Choose a bin
uniformly at random and throw all the balls into that bin.”

Note that in this manner of throwing balls, we still have P [Xi = j ] = 1/n,
for all i ∈ [m] and j ∈ [n]. So, the expected number of balls in the j-th
bin is still m/n.
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Birthday Paradox

English Formulation
Assume that birthdays are distributed uniformly and
independently at random over 365 days of the year
Suppose we have m people in a room
What is the probability that there are (at least) two people
who share the same birthday?
Alternatively, what is the probability that all m people have
distinct birthdays?

Interestingly, as increase the number m we find that the event of
“distinct birthdays” turns from a “likely event” to an “unlikely event”
very quickly. Our goal is to study this phenomenon.
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Mathematical Formulation

We shall consider “people” as balls. And “birthdays” as bins.
We are throwing m balls into n bins
Note that the event “every ball falls into a distinct bin” is
equivalent to the event “Lmax = 1”
So, we are interested in study the following probability

Pm,n := P [Lmax = 1]

as a function of m and n

It is clear that for m = 1, we have Pm,n = 1. And, for
m = n + 1, we have Pm,n = 0.
In fact, in the previous lecture, we had calculated this
probability exactly

Pm,n =
m−1∏
i=0

(
1− i

n

)
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Why Bound Pm,n?

Note that the exact formula for Pm,n is very opaque. We do
not understand its properties clearly from that formula.
Our goal, therefore, is to obtain tight upper and lower bound
for this expression using simpler formulas
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Upper Bound I

Let us start with the exact formula

Pm,n =
m−1∏
i=0

(
1− i

n

)
We do not like “products of polynomials.” Let us turn the
expression on the right-hand side into a summation.

lnPm,n =
m−1∑
i=0

ln

(
1− i

n

)
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Upper Bound II
This is still problematic. The right-hand side expressions are
“logarithmic.” But we can upper bound ln(1− x) using
polynomial in x . For any integer k > 1, we get

lnPm,n =
m−1∑
i=0

ln

(
1− i

n

)

6
m−1∑
i=0

−
(
i

n

)
−
(
i

n

)2

/2−· · · −
(
i

n

)k

/k

Now we can individually bound the sum
∑m−1

i=0 ic > (m−1)c+1

c+1 ,
for each c ∈ [k]. We get

lnPm,n 6 −(m − 1)2

2n
− (m − 1)3

2 · 3n2 −
(m − 1)4

3 · 4n3 −· · · −
(m − 1)k+1

k(k + 1)nk

Please use desmos to see the tightness of this upper-bound.
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Upper Bound III
How to use this bound?

Suppose we want to find out m (as a function of n) such that
Pm,n 6 0.1.
To find such an m, let us find m such that

−(m − 1)2

2n
− (m − 1)3

2 · 3n2 −
(m − 1)4

3 · 4n3 −· · ·−
(m − 1)k+1

k(k + 1)nk
= ln 0.1

For this value of m, we will have Pm,n 6 0.1.
Note that if (m − 1) = β

√
n then the left hand side of the

expression above is

−(β2/2)− O(n−1/2) = ln 0.1

This implies that
β =

√
−2 ln 0.1− O(n−1/2) =

√
ln 100− O(n−1/2)

Conclusion: At m > const.
√
n the probability Pm,n falls below

0.1 (i.e., collisions are likely)
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Lower Bound I

We now prove a lower-bound using similar techniques. Let k
be any positive integer.

lnPm,n =
m−1∑
i=0

ln

(
1− i

n

)

>
m−1∑
i=0

− i

n
− i2

2n
−· · · − ik

kn
− ik

kn

> −m2

2n
− m3

2 · 3n
−· · · − mk+1

k · (k + 1)n
− mk+1

k · (k + 1)n
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Lower Bound II

How to use this bound?
Suppose we want to find out m (as a function of n) such that
Pm,n > 0.9.
To find such an m, let us find m such that

−m2

2n
− m3

2 · 3n2 −· · · −
mk+1

k · (k + 1)nk
− mk+1

k · (k + 1)nk
= ln 0.9

For this value of m, we will have Pm,n > 0.9.
Note that if m = α

√
n then, for k > 2, the left hand side of

the expression above is

−(α2/2)− O(n−1/2) = ln 0.9

This implies that α =
√
ln(1/0.81)− O(n−1/2)

Conclusion: At m 6 const.
√
n the probability Pm,n is above 0.9

(i.e., collisions are unlikely)
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Birthday Bound: Conclusion

So, collisions are unlikely at m 6 α
√
n and are likely at

m > β
√
n

A small increase of (β − α)
√
n in the value of m causes the

probability of collisions transition from “low” to “high”
This surprising phenomenon is referred to as the birthday
paradox
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Graphs of the Bounds

Check the code for an explanation of the upper and lower bounds
on the birthday problem.

The number n represents the number of bins. You can use the
slider the change its values.
The Y -axis represents probability. The X -axis represents m,
the number of balls.
We are interested in two thresholds. When does Pm,n reach
0.9? And, when does Pm,n reach 0.1?
We plot the exact Pm,n curve
The value k represents the parameter k in the approximation
used in our lecture today. Increasing k make the upper and
lower bounds tighter. You can use the slider to change its
value.
Finally, we have the upper and the lower bounds to the Pm,n

curve
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Alternate Technique to counting Collisions I

Let Ci ,j represent the event that balls i and j fall into the
same bin

Formally, we write this as follows. For i , j ∈ [m] such that
i < j (this restriction avoids double counting) we define

Ci ,j := 1{Xi=Xj}

We are interested in the total number of such collisions. That
is

C :=
∑

i ,j∈[m]
i<j

Ci ,j

Now, we are interested in computing its expected value
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Alternate Technique to counting Collisions II

First let us begin with some preliminary observations
regarding why C is a good measure of collisions.

Note that if there exists a bin with ` balls in it, then we have

C >

(
`
2

)
So, if there exists two balls that collide, then we have ` > 2

and, hence, C >

(
2
2

)
> 1

Further, we have C >

(
Lmax

2

)
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Alternate Technique to counting Collisions III

Now, let us calculate the expected value of C

E [C] = E

 ∑
i ,j∈[m]
i<j

1{Xi=Xj}


=

∑
i ,j∈[m]
i<j

E
[
1{Xi=Xj}

]

=
∑

i ,j∈[m]
i<j

P
[
Xi = Xj

]

=
∑

i ,j∈[m]
i<j

1
n
=

(
m
2

)
1
n
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Alternate Technique to counting Collisions IV

Note that if m ≈
√
2n then E [C] is (roughly) 1, i.e., we

expect two balls to fall in one bin. Earlier we showed that if
m > α

√
n then the probability of collision is > 0.9, and if

m 6 β
√
n then the probability of collision is 6 0.1. The

expected value of collisions becomes 1 in the intermediate
zone (please plot this and check)

Birthday Paradox



Alternate Technique to counting Collisions V

Note on a subtlety.

Note that we only rely on the fact that P
[
Xi = Xj

]
= 1

n , for
distinct i and j

We do not need that all the balls are thrown independently

It suffices if the random variables (X1,X2, . . . ,Xm) are
2-wise independent
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Next Lecture

In the next lecture, we shall study the following quantity

E [Lmax]

Later in the course, we shall study the concentration of Lmax

around the expected value
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