Lecture 03: Probability Basics

Overview

In today's lecture we shall continue with the basics of probability
(1) Let \mathbb{X} be a random variable over the sample space Ω
(2) An event E is a subset of Ω
(3) The probability that the random variable \mathbb{X} takes values in the set E is

$$
\sum_{x \in \Omega: x \in E} \mathbb{P}[\mathbb{X}=x]
$$

(4) We succinctly represent this probability by the following expression

$$
\mathbb{P}[\mathbb{X} \in E]
$$

Chain Rule for Events

- Let \mathbb{X} be a random variable over the sample space Ω
- Let $E_{1}, E_{2}, \ldots, E_{k}$ be events
- The probability that the random variable simultaneously satisfies all the events is represented by

$$
\mathbb{P}\left[\mathbb{X} \in E_{1}, \ldots, \mathbb{X} \in E_{k}\right]
$$

- The chain rule states that, the probability is equal to the following expression

$$
\begin{aligned}
& \mathbb{P}\left[\mathbb{X} \in E_{1}\right] \\
\times & \mathbb{P}\left[\mathbb{X} \in E_{2} \mid \mathbb{X} \in E_{1}\right] \\
\times & \mathbb{P}\left[\mathbb{X} \in E_{3} \mid \mathbb{X} \in E_{1}, \mathbb{X} \in E_{2}\right] \\
& \vdots \\
\times & \mathbb{P}\left[\mathbb{X} \in E_{k} \mid \mathbb{X} \in E_{1}, \ldots, \mathbb{X} \in E_{k-1}\right]
\end{aligned}
$$

Example Problem I

Consider the following experiment described in English

Experiment

Suppose there are n bins. Suppose we throw m balls into n bins such that each balls is thrown uniformly and independently at random into the n possible bins. What is the probability that all balls land in distinct bins?

Example Problem II

Let us formalize this problem

- The bins are numbered $\{1, \ldots, n\}$, represented by $[n]$
- Let $\mathbb{X}=\left(\mathbb{X}_{1}, \ldots, \mathbb{X}_{m}\right)$ be a joint distribution over the sample space $[n]^{\otimes m}$, where \mathbb{X}_{i} represents the bin that the i-th ball falls into
- The random variable \mathbb{X}_{i} is independent of the random variable

$$
\left(\mathbb{X}_{1}, \ldots, \mathbb{X}_{i-1}, \mathbb{X}_{i+1}, \ldots, \mathbb{X}_{m}\right)
$$

- The random variable \mathbb{X}_{i} is a uniform random variable over $[n]$, i.e., for any $x \in[n]$, we have

$$
\mathbb{P}\left[\mathbb{X}_{i}=x\right]=1 / n
$$

Example Problem III

- Let E be the set of all $\left(x_{1}, \ldots, x_{n}\right) \in[n]^{\otimes m}$ such that all x_{i} s are distinct
- We are interested in computing

$$
\mathbb{P}[\mathbb{X} \in E]
$$

Example Problem IV

Technique 1.

- Observe that $|\Omega|=n^{m}$
- For any $x \in \Omega$, we have $\mathbb{P}[\mathbb{X}=x]=1 / n^{m}$
- So, $\mathbb{P}[\mathbb{X} \in E]=|E| / n^{m}$
- We can see that $|E|=n(n-1) \cdots(n-m+1)$ (This is because the first coordinate can take n possible values, the second coordinate can take ($n-1$) possible values, and so on.)
- So, we have

$$
\mathbb{P}[\mathbb{X} \in E]=\frac{n(n-1) \cdots(n-m+1)}{n^{m}}
$$

Example Problem V

Technique 2.

- For $i \in\{1, \ldots, m\}$ define the event E_{i} as follows
"Ball i falls in a different bin from the balls $\{1,2, \ldots, i-1\}$ "
- We are interested in the probability

$$
\mathbb{P}[\mathbb{X} \in E]=\mathbb{P}\left[\mathbb{X} \in E_{1}, \ldots, \mathbb{X} \in E_{m}\right]
$$

- The main observation is the following

$$
\mathbb{P}\left[\mathbb{X} \in E_{i} \mid \mathbb{X} \in E_{1}, \ldots, \mathbb{X} \in E_{i-1}\right]=\left(1-\frac{i-1}{n}\right)
$$

- By chain rule, we have

$$
\mathbb{P}[\mathbb{X} \in E]=1 \cdot\left(1-\frac{1}{n}\right) \cdot\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{m-1}{n}\right)
$$

Probability Inequalities I

(1) Let \mathbb{X} be a random variable over the sample space Ω
(2) Let E_{1} and E_{2} be two events

Lemma

If $E_{1} \subseteq E_{2}$, then

$$
\mathbb{P}\left[\mathbb{X} \in E_{1}\right] \leqslant \mathbb{P}\left[\mathbb{X} \in E_{2}\right]
$$

Proof.

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{X} \in E_{2}\right] & =\sum_{x \in \Omega: x \in E_{2}} \mathbb{P}[\mathbb{X}=x] \\
& =\sum_{x \in \Omega: x \in E_{1}} \mathbb{P}[\mathbb{X}=x]+\sum_{x \in \Omega: x \in E_{2} \backslash E_{1}} \mathbb{P}[\mathbb{X}=x] \\
& \geqslant \mathbb{P}\left[\mathbb{X} \in E_{1}\right]
\end{aligned}
$$

Probability Inequalities II

Lemma

$$
\mathbb{P}\left[\mathbb{X} \in E_{1}, \mathbb{X} \in E_{2}\right] \leqslant \mathbb{P}\left[\mathbb{X} \in E_{1}\right]
$$

Proof.

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{X} \in E_{1}, \mathbb{X} \in E_{2}\right] & =\mathbb{P}\left[\mathbb{X} \in E_{1}\right] \cdot \mathbb{P}\left[\mathbb{X} \in E_{1} \mid \mathbb{X} \in E_{2}\right] \\
& \leqslant \mathbb{P}\left[\mathbb{X} \in E_{1}\right] \cdot 1 \\
& =\mathbb{P}\left[\mathbb{X} \in E_{1}\right]
\end{aligned}
$$

Probability Inequalities III

Lemma (Union Bound)

$$
\mathbb{P}\left[\mathbb{X} \in E_{1} \cup E_{2}\right] \leqslant \mathbb{P}\left[\mathbb{X} \in E_{1}\right]+\mathbb{P}\left[\mathbb{X} \in E_{2}\right]
$$

Proof.

$$
\begin{align*}
\mathbb{P}\left[\mathbb{X} \in E_{1} \cup E_{2}\right] & =\sum_{x \in \Omega: x \in E_{1} \cup E_{2}} \mathbb{P}[\mathbb{X}=x] \\
& =\sum_{x \in \Omega: x \in E_{1}} \mathbb{P}[\mathbb{X}=x]+\sum_{x \in \Omega: x \in E_{2} \backslash E_{1}} \mathbb{P}[\mathbb{X}=x] \\
& =\mathbb{P}\left[\mathbb{X} \in E_{1}\right]+\mathbb{P}\left[\mathbb{X} \in E_{2} \backslash E_{1}\right] \\
& \leqslant \mathbb{P}\left[\mathbb{X} \in E_{1}\right]+\mathbb{P}\left[\mathbb{X} \in E_{2}\right]
\end{align*}
$$

Expected Outcome

- Suppose $\Omega \subseteq \mathbb{R}$
- For the purposes of this course we shall restrict to discrete Ω (for example, the set of all natural numbers)
- The expected outcome of the random variable \mathbb{X}, represented by $\mathbb{E}[\mathbb{X}]$, is the following quantity

$$
\mathbb{E}[\mathbb{X}]=\sum_{x \in \Omega} x \cdot \mathbb{P}[\mathbb{X}=x]
$$

For example: Suppose \mathbb{X} is a random variable over the sample space \mathbb{N} (the set of all natural numbers). The probability $\mathbb{P}[\mathbb{X}=i]=1 / 2^{i}$.
So, the expected outcome is defined to be

$$
\mathbb{E}[\mathbb{X}]=\sum_{x \in \Omega} x \mathbb{P}[\mathbb{X}=x]=\sum_{x=1}^{\infty} x \cdot \frac{1}{2^{x}}=2
$$

Linearity of Expectation

Theorem (Linearity of Expectation)

Suppose $\left(\mathbb{X}_{1}, \mathbb{X}_{2}\right)$ is a joint distribution over the sample space $\Omega_{1} \times \Omega_{2}$ The following holds.

$$
\mathbb{E}\left[\mathbb{X}_{1}+\mathbb{X}_{2}\right]=\mathbb{E}\left[\mathbb{X}_{1}\right]+\mathbb{E}\left[\mathbb{X}_{2}\right]
$$

We emphasize that this result holds even if \mathbb{X}_{1} and \mathbb{X}_{2} are correlated!
Think: The proof is left as an exercise.

- Let \mathbb{X} be a random variable over the sample space Ω
- Let $E \subseteq \Omega$ be an event
- Let $f: \Omega \rightarrow\{0,1\}$ be the following function

$$
f(x)= \begin{cases}1, & x \in E \\ 0, & x \notin E\end{cases}
$$

- The random variable $f(\mathbb{X})$ is referred to as the "indicator variable for the event $E^{\prime \prime}$
- It is represented by $\mathbf{1}_{\{E\}}$

Lemma

$$
\mathbb{E}\left[\mathbf{1}_{\{E\}}\right]=\mathbb{P}[\mathbb{X} \in E]
$$

The proof is left as an exercise.

