
Lecture 02: Summations and Probability

Summations and Probability



Overview

In today’s lecture, we shall cover two topics.
1 Technique to approximately sum sequences. We shall see how

integration serves as a good approximation of summation of
sequences.

2 Basics of Probability. We shall cover Bayes’ Rule, chain rule,
expectation and linearity of expectation.
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Estimating Summation of an Increasing Sequence I

Suppose f is an increasing function.

We are interested in finding the following summation

Sn = f (1) + f (2) +· · ·+ f (n)

For example:
For f (x) = x , we know that Sn = n(n + 1)/2
For f (x) = 2x − 1, we know that Sn = n2.
For f (x) = x2, we know that Sn = n(n + 1/2)(n + 1)/3.
What if f (x) = x3?
What if f (x) = x log(x)?

Do we have general techniques to perform these summations
quickly?
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Estimating Summation of an Increasing Sequence II

We begin with a basic observation

Observation
For an increasing f , we have

f (a) 6
∫ a+1

a
f (x) dx 6 f (a + 1)

For a decreasing f , the inequalities are reversed
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Estimating Summation of an Increasing Sequence III

Upper Bound.
Let us apply the basic observation repeatedly

f (1) 6
∫ 2

1
f (x) dx

f (2) 6
∫ 3

2
f (x) dx

...

f (n) 6
∫ n+1

n
f (x) dx

Summing up both the sides, we get

Sn 6
∫ 2

1
f (x) dx +· · ·+

∫ n+1

n
f (x) dx =

∫ n+1

1
f (x) dx
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Estimating Summation of an Increasing Sequence IV

Lower Bound.
Let us apply the basic observation repeatedly

f (1) >
∫ 1

0
f (x) dx

f (2) >
∫ 2

1
f (x) dx

...

f (n) >
∫ n

n−1
f (x) dx

Summing up both the sides, we get

Sn >
∫ 1

0
f (x) dx +· · ·+

∫ n

n−1
f (x) dx =

∫ n

0
f (x) dx
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Estimating Summation of an Increasing Sequence V

We can apply this result directly to several functions f and get
the following results

Suppose f (x) = xc , for a positive constant c . Then we get

nc+1

c + 1
6 Sn 6

(n + 1)c+1 − 1
c + 1

Try applying it to other functions like f (x) = x log(x),
f (x) = log(x), and f (x) = exp(x).
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Estimating Summation of a Decreasing Sequence

The basic observation for decreasing function changes to

f (a) >
∫ a+1

a
f (x) dx > f (a + 1)

This implies that∫ n

0
f (x) dx > Sn >

∫ n+1

1
f (x) dx

Apply this observation to estimate Sn when f (x) = 1/x and
f (x) = x−c , where c is a positive constant
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Food for Thought

For convex or concave f , we can perform a more precise
estimation. Think of using trapeziums to estimate the area of
the curve

∫ a+1
a f (x) dx .
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Probability Basics

Sample Space: Ω is a set of outcomes (it can either be finite
or infinite)
Random Variable: X is a random variable that assigns
probabilities to outcomes

Example: Let Ω = {Heads,Tails}. Let X be a random variable that
outputs Heads with probability 1/3 and outputs Tails with
probability 2/3

The probability that X assigns to the outcome x is represented
by

P [X = x ]

Example: In the ongoing example P [X = Heads] = 1/3.
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Function of a Random Variable

Let f : Ω→ Ω′ be a function
Let X be a random variable over the sample space X
We define a new random variable f (X) is over Ω′ as follows

P
[
f (X) = y

]
=

∑
x∈Ω: f (x)=y

P [X = x ]
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Joint Distribution and Marginal Distributions I

Suppose (X1,X2) is a random variable over Ω1 × Ω2.
Intuitively, the random variable (X1,X2) takes values of the
form (x1, x2), where the first coordinate lies in Ω1, and the
second coordinate likes in Ω2

For example, let (X1,X2) represent the temperatures of West
Lafayette and Lafayette. Their sample space is Z× Z. Note that
these two outcomes can be correlated with each other.
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Joint Distribution and Marginal Distributions II

Let P1 : Ω1 × Ω2 → Ω1 be the function P1(x1, x2) = x1 (the
projection operator)

So, the random variable P1(X1,X2) is a probability
distribution over the sample space Ω1

This is represented simply as X1, the marginal distribution of
the first coordinate

Similarly, we can define X2
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Conditional Distribution

Let (X1,X2) be a joint distribution over the sample space
Ω1 × Ω2

We can define the distribution (X1|X2 = x2) as follows
This random variable is a distribution over the sample space Ω1
The probability distribution is defined as follows

P
[
X1 = x1|X2 = x2

]
=

P [X1 = x1,X2 = x2]∑
x∈Ω1

P [X1 = x ,X2 = x2]

For example, conditioned on the temperature at Lafayette being 0,
what is the conditional probability distribution of the temperature
in West Lafayette?
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Bayes’ Rule

Theorem (Bayes’ Rule)

Let (X1,X2) be a joint distribution over the sample space (Ω1,Ω2).
Let x1 ∈ Ω1 and x2 ∈ Ω2 be such that P [X1 = x1,X2 = x2] > 0.
Then, the following holds.

P
[
X1 = x1|X2 = x2

]
=

P [X1 = x1,X2 = x2]

P [X2 = x2]

The random variables X1 and X2 are independent of each other if
the distribution (X1|X2 = x2) is identical to the random variable
X1, for all x2 ∈ Ω2 such that P [X2 = x2] > 0
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Chain Rule

We can generalize the Bayes’ Rule as follows.

Theorem (Chain Rule)

Let (X1,X2, . . . ,Xn) be a joint distribution over the sample space
Ω1 × Ω2 ×· · · × Ωn. For any (x1, . . . , xn) ∈ Ω1 ×· · · × Ωn we have

P [X1 = x1, . . . ,Xn = xn] =
n∏

i=1

P
[
Xi = xi |Xi−1 = xi−1 . . . ,X1 = x1

]
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