Homework 4

- 1. (10 + 10 + 10 + 10 points) Recall that we apply discrete Fourier Analysis on the Boolean Hypercube to analyze functions when their domain is $\{0,1\}^n$. We will generalize this to arbitrary domain.
 - (a) Consider the space of all functions $\mathbb{Z}_p \to \mathbb{C}$. Here \mathbb{Z}_p is the set $\{0, 1, \ldots, p-1\}$, where p is a prime. And addition and multiplication is defined mod p. The set of complex numbers is represented by \mathbb{C} .

Suppose $f, g: \mathbb{Z}_p \to \mathbb{C}$ be two functions. Recall that the *complex conjugate* of a complex number z = a + ib, represented by \overline{z} , is defined to be a - ib. The inner-product of these two functions is defined by:

$$\langle f,g \rangle := rac{1}{p} \sum_{x \in \mathbb{Z}_p} f(x) \cdot \overline{g(x)}$$

Let $\omega_p = \exp(2\pi i/p)$ and define $\chi_a(x) := \exp(2\pi i a x/p)$, for each $a \in \mathbb{Z}_p$. Prove that $\{\chi_a : a \in \mathbb{Z}_p\}$ is a orthonormal basis for the space of all functions $\mathbb{Z}_p \to \mathbb{C}$.

- (b) Consider the space of all functions $\mathbb{Z}_p^n \to \mathbb{C}$, for prime p. Define inner-product of functions, write the Fourier basis functions, and show their orthonormality.
- (c) Consider the space of all function $\mathbb{Z}_p \times \mathbb{Z}_q \to \mathbb{C}$, for primes p and q. The primes p and q need not necessarily be distinct. Define inner-product of functions, write the Fourier basis functions, and show their orthonormality.
- (d) Consider the space of all function $\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_n} \to \mathbb{C}$. Note that the primes p_1, \ldots, p_n need not be distinct. Define inner-product of functions, write the Fourier basis functions, and show their orthonormality.
- 2. (5 + 5 + 5 points) Let *n* be odd and $f(x): \{0,1\}^n \to \{+1,-1\}$ be the majority function. That is, if the majority of bits in *x* is 0, then f(x) = +1; otherwise f(x) = -1.
 - (a) Compute all the Fourier coefficients of f when n = 3.
 - (b) Let us define odd and even functions. For $x \in \{0,1\}^n$, define flip(x) to be the string where you flip every bit of x. For example flip(0010) = 1101.

A function is *odd* if $f(\operatorname{flip}(x)) = -f(x)$, for all $x \in \{0,1\}^n$. Note that the majority function defined above is an odd function. A set $S \in \{0,1\}^n$ is even if the number of 1s in S is even. For example, when

A set $S \in \{0,1\}^n$ is *even* if the number of 1s in S is even. For example, when n = 3, the sets S = 000, 011, 101, 110 are even sets.

Prove that if f is an odd function then $\widehat{f}(S) = 0$, for all even $S \in \{0, 1\}^n$.

- (c) Similarly, a function f is even if $f(\operatorname{flip}(x)) = f(x)$, for all $x \in \{0,1\}^n$. A set $S \in \{0,1\}^n$ is odd if the number of 1s in S is odd. Prove that if f is an even function then $\widehat{f}(S) = 0$, for all odd $S \in \{0,1\}^n$.
- 3. (15 points) Recall that a function $f: \{0,1\}^n \to \{+1,-1\}$ is linear if $f(0^n) = +1$ and $f(x+y) = f(x) \cdot f(y)$ for all $x, y \in \{0,1\}^n$. Consider the following generalization of the BLR algorithm to test whether a function f is close to linear or the function -f is close to linear.

 $\mathsf{BLR}\text{-}\mathsf{Gen}^f$:

- (a) Let $a, b, c \sim \mathbb{U}_{\{0,1\}^n}$
- (b) Let w = f(a), x = f(b), y = f(c), and z = f(a + b + c)

(c) Return
$$(w \cdot x \cdot y == z)$$

State and prove a theorem that intuitively proves that "the algorithm returns true with high probability" if and only if "the function f or -f is close to a linear function."