Homework 4

1. $(10+10+10+10$ points $)$ Recall that we apply discrete Fourier Analysis on the Boolean Hypercube to analyze functions when their domain is $\{0,1\}^{n}$. We will generalize this to arbitrary domain.
(a) Consider the space of all functions $\mathbb{Z}_{p} \rightarrow \mathbb{C}$. Here \mathbb{Z}_{p} is the set $\{0,1, \ldots, p-1\}$, where p is a prime. And addition and multiplication is defined $\bmod p$. The set of complex numbers is represented by \mathbb{C}.
Suppose $f, g: \mathbb{Z}_{p} \rightarrow \mathbb{C}$ be two functions. Recall that the complex conjugate of a complex number $z=a+\imath b$, represented by \bar{z}, is defined to be $a-\imath b$. The inner-product of these two functions is defined by:

$$
\langle f, g\rangle:=\frac{1}{p} \sum_{x \in \mathbb{Z}_{p}} f(x) \cdot \overline{g(x)}
$$

Let $\omega_{p}=\exp (2 \pi \imath / p)$ and define $\chi_{a}(x):=\exp (2 \pi \imath a x / p)$, for each $a \in \mathbb{Z}_{p}$. Prove that $\left\{\chi_{a}: a \in \mathbb{Z}_{p}\right\}$ is a orthonormal basis for the space of all functions $\mathbb{Z}_{p} \rightarrow \mathbb{C}$.
(b) Consider the space of all functions $\mathbb{Z}_{p}^{n} \rightarrow \mathbb{C}$, for prime p. Define inner-product of functions, write the Fourier basis functions, and show their orthonormality.
(c) Consider the space of all function $\mathbb{Z}_{p} \times \mathbb{Z}_{q} \rightarrow \mathbb{C}$, for primes p and q. The primes p and q need not necessarily be distinct. Define inner-product of functions, write the Fourier basis functions, and show their orthonormality.
(d) Consider the space of all function $\mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \cdots \times \mathbb{Z}_{p_{n}} \rightarrow \mathbb{C}$. Note that the primes p_{1}, \ldots, p_{n} need not be distinct. Define inner-product of functions, write the Fourier basis functions, and show their orthonormality.
2. $\left(5+5+5\right.$ points) Let n be odd and $f(x):\{0,1\}^{n} \rightarrow\{+1,-1\}$ be the majority function. That is, if the majority of bits in x is 0 , then $f(x)=+1$; otherwise $f(x)=-1$.
(a) Compute all the Fourier coefficients of f when $n=3$.
(b) Let us define odd and even functions. For $x \in\{0,1\}^{n}$, define flip (x) to be the string where you flip every bit of x. For example flip $(0010)=1101$.

A function is odd if $f(f \operatorname{llip}(x))=-f(x)$, for all $x \in\{0,1\}^{n}$. Note that the majority function defined above is an odd function.
A set $S \in\{0,1\}^{n}$ is even if the number of 1 s in S is even. For example, when $n=3$, the the sets $S=000,011,101,110$ are even sets.
Prove that if f is an odd function then $\widehat{f}(S)=0$, for all even $S \in\{0,1\}^{n}$.
(c) Similarly, a function f is even if $f(f \operatorname{flip}(x))=f(x)$, for all $x \in\{0,1\}^{n}$. A set $S \in\{0,1\}^{n}$ is odd if the number of 1 s in S is odd. Prove that if f is an even function then $\widehat{f}(S)=0$, for all odd $S \in\{0,1\}^{n}$.
3. (15 points) Recall that a function $f:\{0,1\}^{n} \rightarrow\{+1,-1\}$ is linear if $f\left(0^{n}\right)=+1$ and $f(x+y)=f(x) \cdot f(y)$ for all $x, y \in\{0,1\}^{n}$. Consider the following generalization of the BLR algorithm to test whether a function f is close to linear or the function $-f$ is close to linear.

BLR-Gen ${ }^{f}$:

(a) Let $a, b, c \sim \mathbb{U}_{\{0,1\}^{n}}$
(b) Let $w=f(a), x=f(b), y=f(c)$, and $z=f(a+b+c)$
(c) Return $(w \cdot x \cdot y==z)$

State and prove a theorem that intuitively proves that "the algorithm returns true with high probability" if and only if "the function f or $-f$ is close to a linear function."

