
Homework 3

1. In this problem we will prove a tight upper and lower bound on the size of Ball2(n, r) using
induction.

Recall that Ball2(n, r) is the number of binary strings with weight at most r. The size of
Ball2(n, r) is represented by Vol2(n, r). And, we have:
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Recall that h2(x) = −x log x− (1− x) log(1− x), for x ∈ [0, 1]. We will represent

H2(n, r) = exp(nh2(r/n)) =
nn

rr(n− r)(n−r)

We will prove the following statement. For 1 6 r 6 n/2, we have:
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(a) (5 points) Base Case. Prove the statement for 1 = r 6 n/2.
(b) Induction. In the following steps, we will perform the inductive step.

i. (10 points) Outlier Case. Prove the statement for 1 6 r = n/2, when n is even.
You may use the following bound:
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ii. (5 points) Preparation. Prove that Vol2(n, r) = Vol2(n− 1, r− 1) +Vol2(n− 1, r).
iii. (2 points) Sanity Check. For 2 6 r 6 n/2, prove: If it is not the case that “n is

even and r = n/2” then (r − 1) 6 (n − 1)/2 and r 6 (n − 1)/2. Note that without
verifying this, we cannot apply the next inductive step!

iv. (28 points) Main Inductive Step. Assuming that the statement is true for all
1 6 r 6 n/2 such that n < N , prove the statement for n = N . You may need to
prove the following inequalities. For natural numbers a, b, we have
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2. (5 + 10 points) In this problem we will generalize the Gilbert-Varshamov bound to arbitrary
fields.

For a field F of size q, let Ballq(n, r) be the ball of radius r in Fn centered at the origin. Let
Volq(n, r) be the size of Ballq(n, r). Provide an exact expression for Volq(n, r).

State and prove the Gilbert-Varshamov bound for codes in Fn.

3. (10 + 10 points) In this problem we shall show that a random generator matrix of appropriate
dimension (nearly) achieves the Gilbert-Varshamov Bound with high probability. This tech-
nique can also be used to show the existence of capacity achieving linear codes for appropriate
noisy channels (Shannon’s Noisy Channel Coding Theorem).

Consider the following sampling algorithm.

Sample (n, k):

(a) Let i = 1

(b) While (i 6 k):

i. Sample random vi
$←{0, 1}n

ii. Increment i

(c) Let C be the code spanned by the vectors {v1, . . . , vk}

(d) Return the code C

Given d and t, find as large a value of k as possible such that

P
[
The code C is an [n, k, d]2-code

]
> 1− 2−t

Generalize the algorithm to work for an arbitrary field F and solve the same problem.

4. (5 + 5 + 5 points) In this problem, we will study some interesting properties of linear codes.
These properties are useful in designing secret sharing schemes. In the sequel, we only study
binary linear codes. But the result carry over to linear codes over arbitrary fields.

Let G be the generator matrix of an [n, k, d]2 code. This implies that G is a rank k binary
matrix of dimension k × n. The code C generated by G is the span of all the rows of G. And
any non-zero codeword in C has weight at least d.

Let Uk be the uniform distribution over {0, 1}k. Then, Uk · G is the uniform distribution
over C. We represent this as the joint distribution (C1,C2, . . . ,Cn), where for 1 6 i 6 n, the
random variable Ci is over the sample space {0, 1}.

(a) Prove that the marginal distribution Ci is a uniform distribution over {0, 1} if and only
if the i-th column of G, represented by G∗,i, is non-zero.
Note that this implies the following. If the column G∗,i is the all zero column, then Ci is
0 with probability 1. Otherwise, Ci is a uniform random bit.

(b) For i, j ∈ [n], let ci ∈ {0, 1} be a bit such that P [Ci = ci] > 0. Prove that the conditional
distribution (Cj |Ci = ci) is a uniform distribution over {0, 1} if and only if G∗,j is not in
the span of G∗,i.
Note that this result implies the first result! And, if G∗,j = G∗,i, then the distribution
(Cj |Ci = ci) is identical to the distribution that always outputs ci.



(c) For i1, . . . , it ∈ [n], let (ci1 , . . . , cit−1) be a (t− 1)-bit string such that

P
[
Ci1 = ci1 ∧· · · ∧ Cit−1 = cit−1

]
> 0

Prove that the conditional distribution (Cit |Ci1 = ci1 ∧· · · ∧ Cit−1 = cit−1) is a uniform
distribution over {0, 1} if and only if G∗,it is not in the span of {G∗,i1 , . . . , G∗,it−1}.
Note that this result implies the second result! And, ifG∗,it is in the span of {G∗,i1 , . . . , G∗,it−1},
then the distribution (Cit |Ci1 = ci1 ∧· · · ∧ Cit−1 = cit−1) has a deterministic output.


