Homework 1

1. $((4+1)+(4+1)$ points) Use Jensen's Inequality to prove the following inequalities.

- Let A, B and C be the three angles of a triangle. Prove that $\sin A+\sin B+\sin C \leqslant \frac{3 \sqrt{3}}{2}$. Find the exact criterion for equality.
- Let \mathbb{X} be a random variable over a finite sample space Ω. We define the entropy of the random variable \mathbb{X} as $\mathrm{H}(\mathbb{X}):=-\sum_{x \in \Omega} \mathbb{P}[\mathbb{X}=x] \lg \mathbb{P}[\mathbb{X}=x]$. Prove that $\mathrm{H}(\mathbb{X}) \leqslant \lg |\Omega|$. Find the exact criterion for equality.

2. (10 points) Let M be a $n \times m$ matrix such that each of its entries is 0 or 1 . Let $B=\{(i, j): i \in$ $[n], j \in[m], M(i, j)=1\}$. Suppose $|B| \geqslant \varepsilon \cdot(n m)$, i.e., the set B covers at least an ε fraction of the entries of the matrix. Let R be the set of rows i such that $\sum_{j=1}^{m} M(i, j) \geqslant(\varepsilon / 2) \cdot m$. Intuitively, R is the set of rows in the matrix where at least $\varepsilon / 2$ fraction of the entries at in the set B. Prove that $|R| \geqslant(\varepsilon / 2) n$.
3. (10 points) Let $\pi(x)$ represent the number of prime numbers that are less than x. For example, $\pi(16)=|\{2,3,5,7,11,13\}|=6$. The celebrated "Prime Number Theorem" shows that $\pi(x)$ roughly behaves like $x / \lg x$, for large enough x. In this question assume that $\pi(x)=x / \lg x$.
Let $r(x)$ represent the number of bits that are needed to represent the number x in binary. For example, $r(9)=4$.
Let $\Omega_{n}=\{p: p$ is a prime, and $r(p) \leqslant n\}$. Let \mathbb{X}_{n} be uniform distribution over Ω_{n}. What is $\mathbb{E}\left[r\left(\mathbb{X}_{n}\right)\right]$?
4. (10 points) Let $f(x)$ be a convex upward function for $x \geqslant 1$. Prove that

$$
\sum_{i=1}^{n} f(i) \leqslant \frac{f(1)+f(n)}{2}+\int_{1}^{n} f(x) \mathrm{d} x
$$

5. $\left(3+3+2+5+2\right.$ points) The "Stirling Approximation" states that x ! is roughly $\sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}$, for large enough x. So, this approximation cannot be applied to small values of x.
Let $p \in(0,1 / 2)$ be a constant. Let $B(n, p)$ be the number of n-bit binary strings that have at most $p n 1 \mathrm{~s}$. Note that we have:

$$
B(n, p)=\sum_{0 \leqslant i \leqslant p n}\binom{n}{i}
$$

We will upper bound this number.
(a) Prove that, for $1 \leqslant i \leqslant p n$, we have:

$$
\binom{n}{i-1} \leqslant \frac{p}{1-p}\binom{n}{i}
$$

(b) Prove that, for $0 \leqslant k \leqslant p n$, we have:

$$
\binom{n}{p n-k} \leqslant\left(\frac{p}{1-p}\right)^{k}\binom{n}{p n}
$$

(c) Prove that

$$
B(n, p) \leqslant\left(\frac{1-p}{1-2 p}\right)\binom{n}{p n}
$$

(d) Let $h:[0,1] \rightarrow[0,1]$ be the binary entropy function defined as follows:

$$
h(x)=-x \lg x-(1-x) \lg (1-x)
$$

Use Stirling Approximation to show that

$$
\binom{n}{p n} \text { is roughly } \frac{2^{h(p) n}}{\sqrt{2 p(1-p) \pi n}}
$$

(e) Prove that, for large enough $n, B(n, p) \leqslant 2^{h(p) n}$.
6. (Extra Credit) Suppose we are given a black-box B. If we ping this black-box, it outputs a uniformly random real number in the range $[0,1]$.
Let S_{n} denote the set of all permutations of size n (A size n permutation is a bijection from $[n] \rightarrow[n])$. We are interested in constructing an algorithm that uses this black-box to output a permutation that is drawn uniformly at random from S_{n}. Consider the following conjectured approach:

```
function Uniform_Permutation_Generator( \(n\) )
    for \(i=1\) to \(n\) do
        Ping \(B\) to obtain to obtain a sample \(x_{i}\)
    end for
    Let \(\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)\) be the sorting of the sequence \(\left(x_{1}, \ldots, x_{n}\right)\) in an increasing order. (If there
are collisions, i.e. there are \(i<j\) such that \(x_{i}=x_{j}\), then the sorted sequence has \(x_{i}\) before \(x_{j}\) )
    Let \(\pi\) be the permutation such that, for \(k \in[n]\), we have \(\pi(k)=i_{k}\).
    Output \(\pi\)
end function
```

Let \mathbb{X}_{n} be the random variable corresponding to the output of the algorithm described above. Prove or disprove that, for any $\pi \in S_{n}$, we have

$$
\mathbb{P}\left[\mathbb{X}_{n}=\pi\right]=\frac{1}{n!}
$$

