Homework 1

- 1. ((4+1) + (4+1)) points) Use Jensen's Inequality to prove the following inequalities.
 - Let A, B and C be the three angles of a triangle. Prove that $\sin A + \sin B + \sin C \leq \frac{3\sqrt{3}}{2}$. Find the exact criterion for equality.
 - Let \mathbb{X} be a random variable over a finite sample space Ω . We define the entropy of the random variable \mathbb{X} as $\mathrm{H}(\mathbb{X}) := -\sum_{x \in \Omega} \mathbb{P}[\mathbb{X} = x] \lg \mathbb{P}[\mathbb{X} = x]$. Prove that $\mathrm{H}(\mathbb{X}) \leq \lg |\Omega|$. Find the exact criterion for equality.
- 2. (10 points) Let M be a $n \times m$ matrix such that each of its entries is 0 or 1. Let $B = \{(i, j) : i \in [n], j \in [m], M(i, j) = 1\}$. Suppose $|B| \ge \varepsilon \cdot (nm)$, i.e., the set B covers at least an ε fraction of the entries of the matrix. Let R be the set of rows i such that $\sum_{j=1}^{m} M(i, j) \ge (\varepsilon/2) \cdot m$. Intuitively, R is the set of rows in the matrix where at least $\varepsilon/2$ fraction of the entries at in the set B. Prove that $|R| \ge (\varepsilon/2)n$.
- 3. (10 points) Let $\pi(x)$ represent the number of prime numbers that are less than x. For example, $\pi(16) = |\{2, 3, 5, 7, 11, 13\}| = 6$. The celebrated "Prime Number Theorem" shows that $\pi(x)$ roughly behaves like $x/\lg x$, for large enough x. In this question assume that $\pi(x) = x/\lg x$. Let r(x) represent the number of bits that are needed to represent the number x in binary. For example, r(9) = 4.

Let $\Omega_n = \{p : p \text{ is a prime, and } r(p) \leq n\}$. Let \mathbb{X}_n be uniform distribution over Ω_n . What is $\mathbb{E}[r(\mathbb{X}_n)]$?

4. (10 points) Let f(x) be a convex upward function for $x \ge 1$. Prove that

$$\sum_{i=1}^{n} f(i) \leq \frac{f(1) + f(n)}{2} + \int_{1}^{n} f(x) \, \mathrm{d}x$$

5. (3 + 3 + 2 + 5 + 2 points) The "Stirling Approximation" states that x! is roughly $\sqrt{2\pi x} \left(\frac{x}{e}\right)^x$, for large enough x. So, this approximation cannot be applied to small values of x.

Let $p \in (0, 1/2)$ be a constant. Let B(n, p) be the number of *n*-bit binary strings that have at most pn 1s. Note that we have:

$$B(n,p) = \sum_{0 \leqslant i \leqslant pn} \binom{n}{i}$$

We will upper bound this number.

(a) Prove that, for $1 \leq i \leq pn$, we have:

$$\binom{n}{i-1} \leqslant \frac{p}{1-p} \binom{n}{i}$$

(b) Prove that, for $0 \leq k \leq pn$, we have:

$$\binom{n}{pn-k} \leqslant \left(\frac{p}{1-p}\right)^k \binom{n}{pn}$$

(c) Prove that

$$B(n,p) \leqslant \left(\frac{1-p}{1-2p}\right) \binom{n}{pn}$$

(d) Let $h: [0,1] \to [0,1]$ be the binary entropy function defined as follows:

$$h(x) = -x \lg x - (1-x) \lg (1-x)$$

Use Stirling Approximation to show that

$$\binom{n}{pn}$$
 is roughly $\frac{2^{h(p)n}}{\sqrt{2p(1-p)\pi n}}$

- (e) Prove that, for large enough $n, B(n, p) \leq 2^{h(p)n}$.
- 6. (Extra Credit) Suppose we are given a black-box B. If we ping this black-box, it outputs a uniformly random real number in the range [0, 1].

Let S_n denote the set of all permutations of size n (A size n permutation is a bijection from $[n] \rightarrow [n]$). We are interested in constructing an algorithm that uses this black-box to output a permutation that is drawn uniformly at random from S_n . Consider the following conjectured approach:

function UNIFORM_PERMUTATION_GENERATOR(n) for i = 1 to n do Ping B to obtain to obtain a sample x_i end for Let $(x_{i_1}, \ldots, x_{i_n})$ be the sorting of the sequence (x_1, \ldots, x_n) in an increasing order. (If there are collisions, i.e. there are i < j such that $x_i = x_j$, then the sorted sequence has x_i before x_j) Let π be the permutation such that, for $k \in [n]$, we have $\pi(k) = i_k$. Output π end function

Let X_n be the random variable corresponding to the output of the algorithm described above. Prove or disprove that, for any $\pi \in S_n$, we have

$$\mathbb{P}\left[\mathbb{X}_n = \pi\right] = \frac{1}{n!}$$