Lecture 22: Linearity Testing

- In general, we consider boolean functions to be functions that $\operatorname{map}\{0,1\}^{n} \rightarrow\{0,1\}$
- For ease of analysis we will interpret boolean functions to be $\{0,1\}^{n} \rightarrow\{+1,-1\}$
- In particular, the boolean output 0 will correspond to the output +1 , and the boolean output 1 will correspond to the output -1
- For example, $S \cdot x$ is a linear function that takes x as input and outputs $0 / 1$ as output. In our context, the function χ_{S} corresponds to this linear function

Blum-Luby-Rubinfeld Linearity Testing

- Given oracle access to a function f ascertain whether the function is close to linear or not

BLR ${ }^{f}$:

- Sample $a, b \sim \mathbb{U}_{\{0,1\}^{n}}$
- Evaluate $x=f(a), y=f(b)$, and $z=f(a+b)$
- Return $(x \cdot y==z)$

We want to prove: "The probability that this algorithm outputs true is high" if and only if " f is close to linear"

Agreement of two Boolean Functions

- Let $f, g:\{0,1\}^{n} \rightarrow\{+1,-1\}$ be two boolean functions
- The probability that f and g agree is

$$
\mathbb{P}\left[f\left(\mathbb{U}_{\{0,1\}^{n}}\right)=g\left(\mathbb{U}_{\{0,1\}^{n}}\right)\right]
$$

- Note that

$$
\mathbb{P}\left[f\left(\mathbb{U}_{\{0,1\}^{n}}\right)=g\left(\mathbb{U}_{\{0,1\}^{n}}\right)\right]=1-\varepsilon \text { if and only if }\langle f, g\rangle=1-2 \varepsilon
$$

- And recall that $\langle f, g\rangle=\mathbb{E}[f(\mathbb{U}) g(\mathbb{U})]$

BLR-Testing Theorem Formulation

The claim

"The probability that this algorithm outputs true is high" if and only if " f is close to linear"

Is equivalent to proving
" $\mathbb{E}[f(\mathbb{A}) f(\mathbb{B}) f(\mathbb{A}+\mathbb{B})]$ is high" if and only if " f is close to linear"
Is equivalent to proving

$$
\begin{gathered}
\text { " } \mathbb{E}[f(\mathbb{A}) f(\mathbb{B}) f(\mathbb{A}+\mathbb{B})] \text { is high" if and only if "There exists } \\
S \in\{0,1\}^{n} \text { such that }\left\langle f, \chi_{S}\right\rangle \text { is high" }
\end{gathered}
$$

Is equivalent to proving
" $\mathbb{E}[f(\mathbb{A}) f(\mathbb{B}) f(\mathbb{A}+\mathbb{B})]$ is high" if and only if " $\max \widehat{f}(S)$ is high"

A Simplification

$$
\mathbb{E}[f(\mathbb{A}) f(\mathbb{B}) f(\mathbb{A}+\mathbb{B})]=\frac{1}{N^{2}} \sum_{a, b} f(a) f(b) f(a+b)
$$

Recall that $f=\sum_{S} \widehat{f}(S) \chi_{S}$. So, we have

$$
\begin{aligned}
& \frac{1}{N^{2}} \sum_{a, b} f(a) f(b) f(a+b) \\
= & \frac{1}{N^{2}} \sum_{a, b}\left(\sum_{R} \widehat{f}(R) \chi_{R}(a)\right)\left(\sum_{S} \widehat{f}(S) \chi_{S}(b)\right)\left(\sum_{T} \widehat{f}(T) \chi_{T}(a+b)\right) \\
= & \frac{1}{N^{2}} \sum_{a, b, R, S, T} \widehat{f}(R) \widehat{f}(S) \widehat{f}(T) \chi_{R}(a) \chi_{S}(b) \chi_{T}(a+b)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{N^{2}} \sum_{a, b, R, S, T} \widehat{f}(R) \widehat{f}(S) \widehat{f}(T) \chi_{R}(a) \chi_{S}(b) \chi_{T}(a) \chi_{T}(b) \\
= & \frac{1}{N^{2}} \sum_{a, R, S} \widehat{f}(R) \widehat{f}(S) \chi_{R}(a) \sum_{T} \widehat{f}(T) \chi_{T}(a) \sum_{b} \chi_{S}(b) \chi_{T}(b) \\
= & \frac{1}{N} \sum_{a, R, S} \widehat{f}(R) \widehat{f}(S) \chi_{R}(a) \sum_{T} \widehat{f}(T) \chi_{T}(a)\left\langle\chi_{S}, \chi_{T}\right\rangle \\
= & \frac{1}{N} \sum_{a, R, S} \widehat{f}(R) \widehat{f}(S) \chi_{R}(a) \widehat{f}(S) \chi_{S}(a) \\
= & \frac{1}{N} \sum_{S} \widehat{f}(S)^{2} \sum_{R} \widehat{f}(R) \sum_{a} \chi_{R}(a) \chi_{S}(a) \\
= & \sum_{S} \widehat{f}(S)^{2} \sum_{R} \widehat{f}(R)\left\langle\chi_{R}, \chi_{S}\right\rangle=\sum_{S} \widehat{f}(S)^{3}
\end{aligned}
$$

BLR-Theorem Statement

$" \mathbb{E}[f(\mathbb{A}) f(\mathbb{B}) f(\mathbb{A}+\mathbb{B})]$ is high" if and only if " $\max \widehat{f}(S)$ is high"
Is equivalent to proving

$$
\text { " } \sum_{S} \widehat{f}(S)^{3} \text { is high" if and only if "max } \widehat{f}(S) \text { is high" }
$$

This result is false unless we add the constraint that f is boolean (Think: Why is this false?)

Boolean Constraint

- Since f is boolean, we have $\langle f, f\rangle=1$
- By Parseval's identity we get

$$
1=\sum_{S} \widehat{f}(S)^{2}
$$

BLR-Theorem Statement (Final)

Under the constraint

$$
\sum_{S} \widehat{f}(S)^{2}=1
$$

We have

$$
" \sum_{S} \widehat{f}(S)^{3} \approx 1 " \text { if and only if } " \max \widehat{f}(S) \approx 1 "
$$

Formalize and Prove this inequality

Given the promise that f is close to a linear function, can we recover S such that f is close to χ_{S} ?

