Lecture 21: Extractors (Leftover Hash Lemma)

2-Universal Hash Function Family

- Let $\mathcal{F}_{n, m}$ be the set of all function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
- H is a distribution over the sample space $\mathcal{F}_{n, m}$

Definition (2-Universal Hash Function Family)

For every distinct $x_{1}, x_{2} \in\{0,1\}^{n}$, we have:

$$
\mathbb{P}_{h \sim H}\left[h\left(x_{1}\right)=h\left(x_{2}\right)\right] \leqslant \frac{1}{2^{m}}
$$

- We want that the sampling $h \sim H$ can be efficiently performed by a randomized algorithm that takes a sample from U_{d}
- Intuitively, two separate inputs collide under h at the same probability that they collide under a random function from $\mathcal{F}_{n, m}$

Theorem (LHL)

Let H be a 2-universal Hash Function Family. For any X that is an (n, k)-source, the following is true:

$$
2 \operatorname{SD}\left((H, H(X)),\left(H, \mathbb{U}_{\{0,1\}^{m}}\right)\right) \leqslant \sqrt{\frac{M-1}{K}}
$$

- That is, H is a good extractor for (n, k)-sources
- So, we need to construct the family H that can be sampled using only d-bits of randomness, and we want d to be as small as possible
- Note about the proof: We will see a more general Fourier-based proof, because there is another result, namely "Lopsided-LHL," that (as far as I know) cannot be proven using elementary combinatorial techniques
- We will use $M=2^{m}$ and $K=2^{k}$
- We will use U_{m} to represent the distribution $\mathbb{U}_{\{0,1\}^{m}}$
- We bound the SD as follows:

$$
\begin{aligned}
& \text { 2SD }\left((H, H(X)),\left(H, U_{m}\right)\right) \\
& =\mathbb{E}_{h \sim H}\left[2 \operatorname{SD}\left(h(X), U_{m}\right)\right] \\
& =\mathbb{E}_{h \sim H}\left[\sum_{y \in\{0,1\}^{m}}\left|h(X)(y)-U_{m}(y)\right|\right] \\
& \leqslant \mathbb{E}_{h \sim H}\left[M^{1 / 2}\left(\sum_{y \in\{0,1\}^{m}}\left(h(X)(y)-U_{m}(y)\right)^{2}\right)^{1 / 2}\right], \text { Cauchy-Schwartz } \\
& =M \mathbb{E}_{h \sim H}\left[\sqrt{\left\|h(X)-U_{m}\right\|_{2}^{2}}\right] \\
& \leqslant M \sqrt{\mathbb{E}_{h \sim H}\left[\left\|h(X)-U_{m}\right\|_{2}^{2}\right]}
\end{aligned}
$$

- Let us upper bound $\left\|h(X)-U_{m}\right\|_{2}^{2}$

$$
\begin{aligned}
& \left\|h(X)-U_{m}\right\|_{2}^{2} \\
= & \sum_{S \in\{0,1\}^{m}}\left(h\left(\widehat{X)-U_{m}}\right)(S)^{2},\right. \\
= & \sum_{S \in\{0,1\}^{m}} \widehat{h(X)}(S)^{2} \\
= & \sum_{S \in\{0,1\}^{m}} \widehat{h(X)}(S)^{2}-\widehat{h(X)}(S=\emptyset)^{2} \\
= & \|h(X)\|_{2}^{2}-1 / M^{2}
\end{aligned}
$$

Parseval's

- So, we have the bound:

$$
2 \mathrm{SD}\left((H, H(X)),\left(H, U_{m}\right)\right) \leqslant M \sqrt{\mathbb{E}_{h \sim H}\left[\|h(X)\|_{2}^{2}-M^{-2}\right]}
$$

- So, it suffices to upper bound $\mathbb{E}_{h \sim H}\left[\|h(X)\|_{2}^{2}\right]$

$$
\begin{aligned}
& =\mathbb{E}_{h \sim H}\left[\|h(X)\|_{2}^{2}\right] \\
& =\mathbb{E}_{h \sim H} \mathbb{E}_{y \sim U_{m}}\left[h(X)(y)^{2}\right]
\end{aligned}
$$

$$
=\mathbb{E}_{h \sim H} \mathbb{E}_{y \sim U_{m}}\left[\mathbb{P}\left[h\left(X^{(1)}\right)=y \wedge h\left(X^{(2)}\right)=y\right]\right]
$$

$$
=\mathbb{E}_{h \sim H} \mathbb{E}_{y \sim U_{m}}\left[\mathbb{P}\left[X^{(1)}=X^{(2)}\right] \mathbb{P}\left[h\left(X^{(1)}\right)=h\left(X^{(2)}\right)=y \mid X^{(1)}=X^{(2)}\right]\right]
$$

$$
+\mathbb{E}_{h \sim H} \mathbb{E}_{y \sim U_{m}}\left[\mathbb{P}\left[X^{(1)} \neq X^{(2)}\right] \mathbb{P}\left[h\left(X^{(1)}\right)=h\left(X^{(2)}\right)=y \mid X^{(1)} \neq X^{(2)}\right]\right.
$$

- The first term:

$$
\begin{aligned}
& \mathbb{P}\left[X^{(1)}=X^{(2)}\right] \mathbb{E}_{h \sim H} \frac{1}{M} \sum_{y \in\{0,1\}^{m}} \mathbb{P}\left[h\left(X^{(1)}\right)=h\left(X^{(2)}\right)=y \mid X^{(1)}=X^{(2)}\right] \\
& =\mathbb{P}\left[X^{(1)}=X^{(2)}\right] \mathbb{E}_{h \sim H} \frac{1}{M} \mathbb{P}\left[h\left(X^{(1)}\right)=h\left(X^{(2)}\right) \mid X^{(1)}=X^{(2)}\right] \\
& =\mathbb{P}\left[X^{(1)}=X^{(2)}\right] \mathbb{E}_{h \sim H} \frac{1}{M} \cdot 1 \\
& =\frac{1}{M} \cdot \mathbb{P}\left[X^{(1)}=X^{(2)}\right]
\end{aligned}
$$

Leftover Hash Lemma

- Second Term:

$$
\begin{aligned}
& \frac{1}{M} \cdot \mathbb{P}\left[X^{(1)} \neq X^{(2)}\right] \mathbb{E}_{h \sim H} \mathbb{P}\left[h\left(X^{(1)}\right)=h\left(X^{(2)}\right) \mid X^{(1)} \neq X^{(2)}\right] \\
& \leqslant \frac{1}{M^{2}} \mathbb{P}\left[X^{(1)} \neq X^{(2)}\right] \\
& =\frac{1}{M^{2}}\left(1-\mathbb{P}\left[X^{(1)}=X^{(2)}\right]\right)
\end{aligned}
$$

- So, we have:

$$
\begin{aligned}
& E_{h \sim H}\left[\|h(X)\|_{2}^{2}\right]-\frac{1}{M^{2}} \\
& \leqslant \mathbb{P}\left[X^{(1)}=X^{(2)}\right]\left(\frac{1}{M}-\frac{1}{M^{2}}\right) \\
& \leqslant \frac{1}{K}\left(\frac{1}{M}-\frac{1}{M^{2}}\right)
\end{aligned}
$$

- So, overall we have:

$$
2 \mathrm{SD}\left((H, H(X)),\left(H, U_{m}\right)\right) \leqslant \sqrt{\frac{M}{K}-\frac{1}{K}}
$$

- Hence the result

